I'm Brazilian and I've studied the high school in a technical school. I recall learning about Heron's formula as a secondary topic, but no proof nor any thorough explanation, as the one presented, was given. Thanks for the lecture!
@braucks2 жыл бұрын
Hi. I'm brazilian too, I'm 58 years old and I remember I've learned the Heron's formula when I was a student in a military school, back in the 1970 decade. I have a masters degree in Math and I've worked with bicentric quadrilaterals, it is the theme of my master thesis (sorry for my bad english). One of the funny facts about them is that their area is simply the square root of the product of their sides. This is the best Mathologer video I've already watched. Thank you all!
@aureapureza83242 жыл бұрын
Já eu estudei em ensino médio normal mesmo e nunca ouvi falar dessa fórmula na vida kkk
@MarioRBSouza2 жыл бұрын
@@aureapureza8324 E quanto a Proporção, Áurea ? :P
@patrickwebster31522 жыл бұрын
Não sei pq não aprendemos essa fórmula aqui na Austrália, ela é bonita né? (desculpa por meu português ruim)
@MarioRBSouza2 жыл бұрын
@@patrickwebster3152 Mesmo olhando o conteúdo deste canal, fica claro que não caberia em currículo algum, nem de um curso de faculdade. Fica para o estudante, ao menos os de matemática, se aprofundar em seus conhecimentos. Mas mesmo assim, ainda irá surgir muita coisa que não foi descoberta ou que está em estudo.
@patrickwebster31522 жыл бұрын
A few years ago I used to binge watch this channel. You might imagine my surprise when I started my science degree (undergraduate biochemistry where maths is thankfully a necessary subject to take) and walked into a maths lecture and was confronted by this wonderful person in the flesh. That was about 4 or 5 years ago. Keep up the saintly work you do!
@aradhya_purohit2 жыл бұрын
Oh you make me jealous now.
@yyaa25392 жыл бұрын
@@aradhya_purohit Indeed....
@PC_Simo Жыл бұрын
@@aradhya_purohit Yep 😌. Too bad I’m not Aussie 😢🇦🇺.
@PC_Simo Жыл бұрын
I wish my Biochemistry degree had such great teachers. I might have actually finished it. Instead; most of my teachers and professors were lackluster nobodies, who didn’t really know, how to make stuff accessible. For example, my Physical Chemistry professor just gave us, like, 50 different formulas for rote memorization, without really motivating any of them (like, why do you need integration, for temperature-/pressure-systems 🤯?). 😔
@yaskynemma92202 жыл бұрын
For me is impressive how almost everything can be explained geometrically but commonly isn't thaught like that, even when I find it more beautiful and comprehensible
@praharmitra2 жыл бұрын
It’s actually good that actual math proofs aren’t very geometrical. The geometry behind a lot math is definitely extremely beautiful but it is very easy to get things wrong if you rely on pictures and drawings. Most geometric proofs of complicated results are derived a posteriori since we can back up the geometrical proof with a more precise proof based on other techniques.
@mhmd-mc1132 жыл бұрын
It's how we used to do it before! But once we started using more complex stuff like powers of 4 ie. x⁴ We would have needed to use 4d brains to comprehend And this is why we still thank the arabic mathematician Al-Khawarizmi who created algebra and the hindu-arabic numbers (1, 2...)
@motherisape2 жыл бұрын
Then explain 4:25
@mhmd-mc1132 жыл бұрын
@@motherisape Area = Sr And Sr² = RGP is correct When r was 1 Sr wad S And Sr² was S since 1² = 1
@dekippiesip2 жыл бұрын
@@praharmitra also the fact that algebra and calculus works for any number of dimensions, while geometrical intuition stops at 3.
@ib9rt2 жыл бұрын
I learned of Heron's formula when I was about 8 years old from a table of mathematical formulae in the back of a dictionary, but I was never taught it in school, and I spent most of my life being curious about how to derive it in an elegant and geometrical manner. Your video is fantastic, it has unlocked some remaining pieces of the puzzle I had not figured out.
@chessematics2 жыл бұрын
Blackpenredpen has got an amazing video with the derivation of Heron's formula. It's a bit old, so you might have to scroll down a bit.
@dougr.23982 жыл бұрын
@@chessematics too bad that KZbin punishes people who post useful links in comments :(
@dougr.23982 жыл бұрын
@@chessematics a workaround might be to post only the portion after the dot Belgium
@TheArchitectOfDreams2 жыл бұрын
No wonder why all our tables are freaking Squares. We never learned how to make a rectangle.
@KSignalEingang2 жыл бұрын
This has to be a record - two minutes in and I'm already pausing the video to pick exploded bits of my mind out of the carpet. How did I never learn this before? In school, Heron's formula was presented as a side note, and I never really understood the derivation (meaning I'd have to look it up again any time I wanted to use it). Given a little bit of reflection it all seems crystal clear, now. Nice!
@Mathologer2 жыл бұрын
Mission accomplished :)
@shoam21032 жыл бұрын
On the contrary, the formula had enough symmetry to easily memorize, for me personally at least. But I agree, the derivation is so simple, I'd never forget or have to memorize it! And never learned about the quadratic form.
@PC_Simo6 ай бұрын
🤯
@Muhammed_English3142 жыл бұрын
I already know Heron's formula and Brahmagupta's formulas but I haven't seen a proof for them until now, also that general formula for the area of a quadrilateral is beautiful, thanks
@PaceTheAce2 жыл бұрын
There's a mistake at the end. In Brahmagupta's Formula the third bracket should be (A+C+D-B) not (A+B+D-B). But great video. That are some beautiful equations and you explained all of it really nicely with all these brilliant animations. Love it!
@j100j2 жыл бұрын
I was about to point out the same but decided to scroll the comments to see if someone had already done so. Lickily I did.
@PC_Simo11 ай бұрын
@@j100j Same thing, here.
@ulieggermann4346 Жыл бұрын
Starke Herleitungen! Die Schlussmusik wird immer besser!
@accountname10472 жыл бұрын
2 minutes in and you've already blown my mind Mathologer! Thanks! Love your videos
@nobody78172 жыл бұрын
Whilst in Romania I sat down with a man once who looked JUST EXACTLY like you. He was a Romanian math teacher... we sat there and wow'd each other for about 4 hours. LOL the restaurant was trying to close and we had this deep mathematical conversation going on... You remind me of him so much. (This was about a year ago... seems like a million years ago.)
@professorpoke2 жыл бұрын
In India we have a whole chapter by the name *Herons Formula* . After that I decided to derive my very own formula for finding area of a triangle, but I accidentally deriverd Herons Formula. I was so Happy at that time. Those were the days. 🙂🙂
@PC_Simo11 ай бұрын
Nice 👍🏻. Love to India 🇫🇮❤🇮🇳.
@raymondarata65492 жыл бұрын
In 1967, I took an Engineering Measurements course at U.C. Davis. One of the measuring tools was a polar planimeter which allows you to find the area of any figure by tracing its perimeter. If you have a plot of land drawn on a map. you can easily find the enclosed area. This is a very practical application of Heron's Formula.
@jacobolus2 жыл бұрын
Planimeters don’t use Heron’s formula. A polar planimeter adds up the changes in angle multiplied at each point by the square of the radius. A linear planimeter adds up x dy - y dx, a continuous version of the "shoelace formula" about which Mathologer made another nice video a few years ago kzbin.info/www/bejne/ZnzNeGuGnJt_fc0
@DarcyParker22 Жыл бұрын
Planimeters are connected to the divergence theorem, which green's theorem is derived from, and which the shoelace algorithm can be derived from. And you can derive Heron's formula from green's theorem (divergence theorem). Heron's formula relates area to perimeter of a closed boundary. With the more general divergence's theorem, you can calculate area from the closed boundary of its 2D shape. And going deeper you can also calculate volume from the closed surface boundary of a 3D shape. This is what's amazing about the geometric relationship of a shape's boundary. You can also calculate metrics like center of gravity, volume, inertia tensor of 3D shapes (which are typically expressed with triple integrals) by a simple surface integral. (For example Volume = 1/3 Surface integral of dot product of field [x, y, z] and surface normal * dS. Most 3D models are Boundary Reps, so this is a handy relation in computational geometry. Heron's formula is mapping a 1D metric to a 2D metric just like (perimeter to area) just like this example of divergence theorem is mapping a 2D metric to a 3D metric. The trick is to recognize the special field. In this video, the trick is recognize the geometric relation of the triangle and inscribed unit circle. But there is also a trick in recognizing the field to apply with the divergence's theorem.)
@gonshi92 жыл бұрын
1+2+3 = the amount of seconds between the release of the video and me clicking on it
@PC_Simo11 ай бұрын
For me, it’s: (1+2+3)-(1*2*3).
@Nikolas_Davis2 жыл бұрын
I was taught Heron's formula in high school, in Greece. I found it rather interesting, but considered it a curiosity, mostly, as it wasn't connected to anything else I was taught.
@grumpyparsnip2 жыл бұрын
I learned Heron's formula in school in the US state of New Jersey in the 1990s. Unfortunately, it was not proven, though I did derive my own proof using Law of Cosines similar to the one in the video. I am always on the lookout for better proofs, and the one in the video is definitely beautiful. I love the way the exposition on the 345 triangle gently leads the viewer into the appropriate conceptual space. Well done.
@chessematics2 жыл бұрын
7:00 yes actually. In 9th grade (or, as we call it here, Class IX), there's an entire chapter in the book called Area of Triangle and it's simply filled with good old Heron. Respect from India
@Xubono2 жыл бұрын
A truly beautiful visual and mathematical feast. The complicated symmetry is an extra detail that (for those of us obsessed with symmetry) elevates this to astronomical heights. Thank you, Burkhard for reminding me how much I love Mathematics. A special round of applause to the crystal clear animations.
@markkinnard7962 жыл бұрын
I agree 100%. This was a spectacular video.
@sreedhar75perupally2 жыл бұрын
I learnt Heron's method of finding area of any triangle by myself from a mathematical formulas Book , when I was in 8th class in the year 1988. Even today I find it useful in my field works 👍
@JatinSanghvi12 жыл бұрын
I had requested long back as comment in one of the earlier videos, an intuitive graphical explanation for why the Heron's formula for area of the triangle works, without needing to use trigonometric formulae. Thanks a ton for releasing a video that exactly answers to my request. I haven't found such a great shortcut to reach to the Heron's formula anywhere else in internet.
@lizzyteryoshin35012 жыл бұрын
I learned Heron's formula when I was in middle school in the state of California (4 years ago) and I'm pretty sure it's still being taught, but I've never used it outside of math competitions. Lots of great information in the video that I didn't know before though. Thanks!
@gregwochlik92332 жыл бұрын
I remember using this "unusual" formula around 1995 in a math olympiad (16 years old at the time). I picked it up in a textbook, and managed to memorise it to use it "blindly"
@mlmimichaellucasmontereyin67652 жыл бұрын
WOW!!! Bravo again! This is another indisputably perfect example that supports my theory, metatheory, proofs & metaproofs that show how and why nature's astrophysical geometry, geometry, numbers, maths, and logic are enabled & sustained by the natural metalogical principles of being (i.e., the "cosmos"). I will definitely cite (& link) this episode in my next draft of "Astronomy, Geometry, and Logic" (and formally request permission to use a pic or 2 from the video). Dear Burkard & Marty, thanks again for doing the best, most useful maths series on KZbin.
@Jouzou872 жыл бұрын
Finnish engineer student here. Heron's formula is in our textbook and might have been mentioned like once during a lecture. But we mainly used laws of sine and cosine to solve triangles.
@ShLBh2 жыл бұрын
After appreciating geometry and history, I must commend the script. The coverage and sequencing is well planned and executed. Thanks for everything.
@nugboy4202 жыл бұрын
8:54. I never applied myself in school at all but watching your videos the past year or so has been enlightening! I was a bit intimidated I don’t remember the first topic I saw but I noticed you are a great teacher! … Anyway the time stamp is because I knew it was going to have something to do with a circle lol.
@motherisape2 жыл бұрын
*explain this **4:25*
@Indecisiveness-1553 Жыл бұрын
I keep coming back to watch the animation for finding Brahmagupta’s formula from Heron’s formula. It’s simply incredible, both the animation and the actual proof.
@txikitofandango2 жыл бұрын
Opposing angles subtend a partition of the whole circle. The measure of an angle is half the measure of the arc it subtends. Therefore, the sum of the opposing angles equals half the sum of opposing arcs, which is half of 360 degrees, which is 180 degrees.
@j100012 жыл бұрын
Excellent point, and an easy way to remember this characteristic of cyclic quadrilaterals!
@Mathologer2 жыл бұрын
That's it :)
@beautyofmathematics33992 жыл бұрын
@@Mathologer Hello sir ,i am from India and i am one of the biggest fan of your. ...and i have wish that i want to talk to you...
@BangkokBubonaglia2 жыл бұрын
I'm homeschooling my children, and interestingly I just taught them Heron's formula yesterday as an example of where square roots can be very practical in real life problems. Specifically, we talked about how convenient it can be if you are trying to determine the size of a plot of land you want to buy when all you can measure are distances and no idea if the land is square. Just walk the perimeter, walk the diagonal, apply Heron's formula to the 2 triangles, and you know immediately how big the plot is. For 7th graders who don't yet know trigonometry, the example worked beautifully. It should absolutely be taught in schools. It is a crime that it is not considered essential these days.
@chessematics2 жыл бұрын
It's taught very carefully in India, but i doubt how many students actually care about it.
@EebstertheGreat2 жыл бұрын
You need the square root for computing accelerations from position or distances from a plan or much much more. And when surveying land, you need square roots all over the place. But you will never once use Hero's formula. In particular, accurately measuring angles is easier than accurately measuring distances.
@MeltedMask2 жыл бұрын
Yes, in profesional landsurveying you use angles, because you had equipment (theodolite, total station) that measure angles and distances. Surveying in the core, is to translate points between carthesian coordinate (2,2) to polar coordinate (45°, 2root(2)) and vice versa. And that translation is all about solution for right triangles. Heron's formula is niche one, and good if you only have ruler to measure sides. I would say its Identity should to teach in schools. (And cut some amout of mindles computing) (And why not throw Ptolemy's theorem in to play and calculate solution to last unknown measurement. Actually, it would be fun to first calculate missing border, blocked by huge tree, with Ptolemys. And then using Heron's to calc. the area. )
@Mathologer2 жыл бұрын
@@EebstertheGreat Well, you'll have to measure at least on side of a triangle even for the standard 1/2 base times height formula :) Anyway, speaking for myself, Heron's formula has definitely proved a very useful addition to my mathematical toolbox on many occasions :)
@kindlin2 жыл бұрын
@@EebstertheGreat I use Pythagoras _all the time_ in structural engineering, as every problem has to be turned into, first, their vertical and lateral components (think diagonal braces, roof members, trusses, anything not perfectly vertical or horizontal), and then every member needs to be checked for axial stresses and flexural stresses (column buckling and failing vs beam bending and sagging).
@xCorvus7x2 жыл бұрын
2:34, check of the calculations up to that point: For the equilateral triangle, the height is the length of one of its legs times the cosine of π/6, so the height equals 2*sqrt(3) times sqrt(3)/2 . Thus, the area is half its base, i. e. sqrt(3), times 2 times sqrt(3) times sqrt(3) times 1/2 which amounts to 3*sqrt(3). For the isosceles triangle with legs of the length 2+φ with a base of 2*φ, Pythagoras's theorem gives sqrt( (2+φ)^2 - φ^2 ) = sqrt(4 + 4φ + φ^2 - φ^2) = sqrt( 4(1+φ) ) . The golden ratio is a solution to the the equation x^2 = x+1 , so sqrt( 4(1+φ) ) = sqrt( 4φ^2 ) = 2φ . (Since we're talking about lengths, we can ignore negative results.) Finally, the area of this isosceles triangle is then half its base times its height: φ times 2φ = 2φ^2 .
@xCorvus7x2 жыл бұрын
*In the second paragraph I mean to say that Pythagoras's theorem gives the result above _for the height._
@guruprasadr67432 жыл бұрын
Thanks a lot. This is the first time I have seen someone prove the Heron's formula in this manner. The proof of Brahmagupta's formula is also very interesting and unique.
@DavidBeddard2 жыл бұрын
If I'd lived in Classical Europe, I'd totally have worshiped geometry as sacred! Great video!
@Mathologer2 жыл бұрын
Not much classical geometry left in high school curricula. These days a lot there is about learning how to push buttons on a calculator :(
@mr.johnson38442 жыл бұрын
@@Mathologer High school maths (Algebra and Geometry) teacher here. The reason that we don't do classical geometry anymore is because school is compulsory. Back when classical geometry was taught at this level, school was an elective or privileged activity. The people who were taking classes did so because they wanted to and/or understood the value of it. Most people do not value math. Take a look at your subscriber count compared to mindless entertainment like Markiplier or something. I have good reason to believe that most of my students are not only uninterested in math (in fact, they hate it -- even the cool stuff), but are incapable of comprehending it. So how did the school curriculum respond? By boiling all of the math down so that the students with the lowest math performance could still pass the classes -- that is to say, teaching kids how to push buttons in a calculator, but not why the formulas work or what they mean. It's a waste of everyone's time, but that's what you get when teachers become glorified babysitters for families with working parents.
@KrystalSquirrel2 жыл бұрын
@@mr.johnson3844 Totally agree. High school teacher from USA.
@hugo32222 жыл бұрын
@@mr.johnson3844 I totally agree and want to add: there is also a shift from "learn how to think" to "do as instructed“.
@geraldsnodd2 жыл бұрын
@@mr.johnson3844 true ma'am
@romanvolotov2 жыл бұрын
Actually, here in Russia we are in fact taught Heron's formula at school, but I'm not really used to it since it was a lockdown year when we were taught this. So if a problem requiring Heron's formula to solve it occurs, I'm always a bit perplexed as it doesn't come to mind at first.
@vitaliyred6222 жыл бұрын
not only is it taught but 90% of other Greek formulas are also taught. I knew most greek scholars from all the formulas!
@rtravkin2 жыл бұрын
but i know this with the semi-perimeter denoted by p
@jan_kulawa2 жыл бұрын
I'm from Brazil, and I was taught Heron's formula very early on, around 3rd or 4th grade. It always puzzled me, because it seemed to have been dropped on my lap out of nowhere (as far as my education was concerned, it really was). Still, I'm personally thankful it happened, because my first memory of doing maths by myself, out of sheer curiosity and without any obligation to do so, was trying to verify it from the usual formula for the area of a triangle, equating the two and working through the algebra. I wasn't successful, of course, but it got me here eventually, so that's nice.
@mathwithjanine2 жыл бұрын
I learned Heron's formula in high school and it is so great to see a proof of it! Thank you for such a great video! :)
@pranavabharadwaj24892 жыл бұрын
I'm from India and study in a particular syllabus called ICSE. Heron's formula is a compulsory part of the mathematics syllabus starting from Year 8. However, we only learn and use it in the √s(s-a)(s-b)(s-c) form.As for my opinion on whether it is useful, I think it is very handy to have learnt because you wont always have the height of the triangle given as data. Thanks for the amazing clarification on how the formula was derived.
@chrfiekers78732 жыл бұрын
How wonderful! At 1:44 I even realized (with small simple prove) that this triangle is also divided in areas of 1, 2 and 3! One ssssimple SSSSS - WOW! And there is a general term for a triangle with a right angle and inlying unit circle. The value of the area AREA (using small prove) = G*1 + P*1 + R*1 = (A-1) + (B - 1) + 1 = A + B - 1. Ready! And: There is hidden something more universal... ;-) Once again - just wonderful.
@Adityarm.082 жыл бұрын
I was looking for an Intuitiy proof of this some time ago. Excited to see you explain it. Thank you :)
@Xyz-ik2yr2 жыл бұрын
Really loved this video. The most practical way is the geometric way, that's you have the mastery. Hats off to you mr. Mathologer.
@ziqfriq2 жыл бұрын
Big fan of Heron's formula here, so I may go on a bit. Here in the US, New York State, under the "Regents" math curriculum, in the late 1960's, we did learn Heron's formula. We were not required to memorize the derivation, but it was in the textbook. Decades later, I decided to test my algebraic chops, and try to derive it with the only clue I remember from the book, that it relied on factoring the difference of two squares. If you drop an altitude on one of the sides, you can solve for the altitude and one of the unknown segments on the base simultaneously, using the Pythagorean Theorem. Mathologer takes a shortcut by using the law of cosines, but my method is how you get the law of cosines as well (and you can get rid of the fraction in the Mathologer's version with some convenient cancellations). But once I was there, and I got the formula knowing what I was looking for, I thought of four justifications for "discovering" Heron's formula instead of calling it a day having a formula for the area in terms of the sides: 1) it lacks symmetry. There is nothing special about any side, other than that you chose one to drop an altitude on; 2) it's pretty nasty to calculate from. Many of us have probably calculated nastier ones, but we can do better; 3) it is badly scaled. You end up raising numbers to the fourth power, which usually results in something large, then subtracting them, leading to truncation or round-off errors if you don't keep a lot of decimal places (I realize Heron wasn't thinking about floating point calculations. Heck, he didn't even have a decimal system) 4) it's not obvious from the original formula, at least to me, that your area isn't going to turn out to be the square root of a negative number. If you expand the trinomial and collect terms, you do get something symmetrical, but all the other objections remain. That might tell you that, since expanding didn't work out very well, maybe the opposite--factoring--is the solution. In addition to factoring the difference of two squares, twice, at one point you have to collect some terms and recognize it as the square of a binomial. It's all quite pretty. But it's 100%, algebra, none of the geometric insight of this video. With the final formula, in addition to being much prettier and easier to calculate from (if the need arises which, truthfully, it rarely does) you can see at once that for a legitimate triangle, no one side being longer than the sum of the other two (or equivalently, no side being longer than the semi-perimeter) you'll never get a negative number and moreover, if a "triangle"s one side is exactly equal to the sum of the other two it has zero area, as expected.
@neokart26602 жыл бұрын
Excellent video, the mathematical proof at the end impressed me. I struggled a lot to get the challenge at minute 11:36. First, I drew the diagonals e and f, with an angle x between them. I added the area of the 4 small triangles that are formed (I divided the diagonals into e1,e2 and f1,f2) with the formula A1=(1/2)*e1*f1*sinx, etc. and got A=(1/2)*ef*sinx. Then, I worked the rule of cosines with the same little triangles to get cosx and replace: (sinx)^2=1-(cosx)^2, then: A^2=(1/4)*((ef)^2) *(1-(cosx)^2). In the end I got: A=(1/4)*sqrt(4(ef)^2-(a^2-b^2+c^2-d^2)^2). In this formula there are no trigonometric elements and the formula that appears in the video can be derived algebraically. Maybe there are many easier ways to do it.
@BramCohen2 жыл бұрын
There's an extended formula for three dimensions which shows that meshes consisting entirely of triangles have a fixed volume even if they aren't rigid. Would love to see a video on that.
@briancooke42592 жыл бұрын
How could a deformed geodesic dome have the same volume? The same surface area for sure, but if I squish the top of a dome down there's definitely less area.
@mikeoffthebox2 жыл бұрын
Apparently the great Alexander Grothendieck independently discovered this formula as a schoolchild while being hidden from the Gestapo at an orphanage in Southern France during WWII....it would be nice to be able to give him a mention!
@mrosskne Жыл бұрын
Were you going to answer brian's question?
@mrosskne Жыл бұрын
@@mikeoffthebox What is the formula?
@BramCohen Жыл бұрын
@@briancooke4259 There are multiple possible volumes but you can't continuously go from one to the other by flexing, even when it isn't rigid
@tristandiggs4062 жыл бұрын
Heron's formula was one of my favorite from trig class! Good stuff! Thank you for sharing!
@xavierwainwright87992 жыл бұрын
I didn't learn Heron's formula in school and I was taught in Portugal. Very good video as always, just found a typo at 25:03 (the third term is A+B+D-B)
@fredgotpub8712 жыл бұрын
Visual animated proof at the end + good music = piece of art !
@dr.kraemer2 жыл бұрын
as a teacher, I'd avoid using Blue because of how easy it is to confuse with side B of the triangle.
@Mathologer2 жыл бұрын
And that's exactly the reason why I used purple :)
@johnopalko52232 жыл бұрын
That makes perfect sense. As usual, I was looking for a profound reason and making it more complicated than it needed to be. You'd think I'd know better by now...
@TheLetterW7362 жыл бұрын
@@johnopalko5223 I was thinking, "Is there some weird historical reason?" Nope, of course not.
@hurktang2 жыл бұрын
@@Mathologer Why did you chose purple then ? You had so many nice color available. Saphire or Sky. Ocean, Turquoise or Teal, lavender , Iris even Mauve, Lillac and Violet is better as a blue than "purple", If you must use P why not persian blue, prussian blue or pacific blue. I'm am _SO MUCH_ falsely offended right now...
@CarmenLC2 жыл бұрын
@@hurktang because purple is a common color name, the other one is Orange with looks like 0, and martin did campaign for Yellow
@frankmessner21012 жыл бұрын
Wurde mir noch gelehrt:-) Doch wie bereits erwähnt ohne skizziertem Beweis, jener folgte dann auf der Uni. Danke für jene Videos! Sie sind eine Bereicherung! Ein großes Komplement, und Danke für die Jahre.
@MusicalRaichu2 жыл бұрын
no, in australia we didn't learn the formula, but luckily i came across it somewhere and was so enthralled by it, i used it in class to my teacher's dismay.
@EebstertheGreat2 жыл бұрын
Hero's formula for the area of a triangle is one of those things introduced as a curiosity in a math textbook way back in middle school that I never really got a handle on. To a sixth grader, that is an impressively complex formula for an ancient to have discovered, and no proof was forthcoming. Through high school I saw it a couple more times, always in passing, a sort of neat oddity that seems compact but rarely gets used in practice. It was really neat to see an intuitive proof and motivation after all these years. That said, it doesn't exactly seem useful. Even if you somehow do know the lengths of a triangle but not its angles, this formula is still not the fastest way to find the area. Typically, if you're doing this by hand, you will either have a table of square roots (for Hero's method) or of logs and logs of sines (for the law of sines method). That method is still faster, because you skip all the multiplication steps. If you want to compute the area of the triangle with a computer, you can use Newton's method to get the square root, and I assume Heron's formula really is faster. But the thing is, you basically never know all the side lengths of a triangle (and nothing else) before trying to find its area. Rather, you probably have coordinates, in which case the shoelace formula is by far the fastest. So like, what is this formula actually good for? Is it just a novelty like the quartic formula? If it's never used, then no, I don't think it should be taught as part of a standard curriculum. The brief mentions in books for interested students are probably enough. There is _so much_ I want to add to the math curriculum, and the curriculum is already packed as it is. It's hard to justify cramming in more random formulas to teach, prove, and memorize. (BTW, although the phrase "Heron's formula" is seen pretty often in mathematical texts, in pretty much all other contexts in English, "Hero" is far more common than "Heron." Similarly, we say "Plato" rather than "Platon." The practice of Latinizing ancient Greek names is pretty standard in English. In classical Latin, the nominative singular would be "HERO," and the genitive singular would be "HERONIS." Since the Latin stem is still Heron-, the English adjective would be "Heronic" rather than "Heroic." Again, that's like the adjective "Platonic" rather than "Platoic. Other examples include "Pluto/Plutonic" and "Apollo/Apollonic." Admittedly, there are some exceptions, like the word "gnomon.")
@linoalphonso16002 жыл бұрын
I knew there was a gem in herons formula ... just couldn't see it until your video.... thank you for your amazing insight!!...
@bartekabuz8552 жыл бұрын
I was taught about Heron's formula. My high school teachers said that there is never a need to use it. I think it's always better to use some other tricks to get the area unless all sides are known
@karolakkolo1232 жыл бұрын
Yeah it really depends on which parameters of triangles are most often known or measured. I almost never saw anyone measure or know all three sides of a scalene triangle in practice, since it's way easier to just find two sides and one angle.
@peezieforestem50782 жыл бұрын
I was taught this formula and found it to be a hidden gem for many problems. Unfortunately, I cannot remember whether we proved it or not, but we did prove most things we have learned.
@robobrain100002 жыл бұрын
I remember coming across this formula at the corner of one page in my textbook in high school, and we just glossed over it.
@fzigunov2 жыл бұрын
Wow. You're constantly outdoing yourself with the animations. Heron himself would be mind blown!!!
@cody55352 жыл бұрын
"There should be an equation in there; let's go and find it!" For a moment, I felt that spark of adventure I used to feel when doing math in my youth. I missed that feeling.
@MrRyanroberson12 жыл бұрын
10:30 i guess another thing to mention is that it doesn't matter which pair of angles, since a+b+c+d = 360 in a square, meaning a+b = 360-(c+d), and so cos((a+b)/2) = cos(180 - (c+d)/2) = cos((c+d)/2)
@black_jack_meghav2 жыл бұрын
Ohh I'm early! Yo mathologer sir ! Big fan I'm of yours! It's my physics exam in couple of days so I'll watch the video later! Excited ! ❤❤❤
@Mathologer2 жыл бұрын
I am late and early 1:26 am here in Melbourne. Won't last much longer. Good luck with the physics exam :)
@black_jack_meghav2 жыл бұрын
@@Mathologer THAT MEANS A LOT TO ME SIR!! THANK YOUUUU! ALL THE BEST IN EVERYTHING YOU DO SIR! 👍👍👍
@nugboy4202 жыл бұрын
@@black_jack_meghav good luck!!
@black_jack_meghav2 жыл бұрын
@@nugboy420 thanks a lot 🥺 😇😇😊
@HinduHeads2 жыл бұрын
(Most humbly) At 25:04, there is a typing error in the third term of the Bharhmagupta's formula.
@zubin80102 жыл бұрын
One minute into the video, and I was already surprised: I had never learned/noticed that the 3-4-5 triangle has inradius 1! The fact that the sum/product identity generalizes to any triangle with inradius 1 is amazing.
@ahcuah95262 жыл бұрын
Mind blown. I've always liked all your videos, but for this one, with each new step, I kept exclaiming to myself: "Oh my goodness", "Oh my goodness", "Oh my goodness".
@andrewharrison84362 жыл бұрын
I do NOT remember it being taught in my school in England in the 1960s. I do remember coming across it in my mothers school textbooks - but not with Heron's name attached. Always thought it was fabulous - particularly like the way it gives a zero if S is any one of A, B or C which corresponds to the triangle collapsing into a line.
@forthrightgambitia10322 жыл бұрын
No, Heron's formula has never been part of the UK maths curriculum. Like a lot of interesting things actually, because we expect students *not* to do any maths at university and so try to rush as quickly as possible to calculus.
@ulrichraymond83722 жыл бұрын
There is a beauty when it is explained with visuals which you have well explained. You have seemed have done a beautiful job at that for which i can't thank you enough.Great job.
@Banzybanz2 жыл бұрын
We were taught this in school (7th/8th standard Maths) in Maharashtra, India. No proof was derived sadly but I did one by myself later when learning about incircles. I was talking about it to an Aussie kid years later and he very proudly said they didn't learn any of that. Like I was the idiot for learning something extra.
@caspermadlener41912 жыл бұрын
Calculating the area of a triangle is part of the Mathematics Olympiad program (IMO training), because counting things in multiple ways can reveal complicated identities. The proof used the cosine rule. Ew. I actually discovered (and proved) the formula myself, when I was about ~13, just by using the right-angle theorem (Pythagoras). More recently, I found out (thanks to Wikipedia) that the maximum area of a quadrilateral happens with a cyclic quadrilateral. This is beautiful, because we can extend this for any polygon. I used some ugly math to prove this, but I did found out about some nice things. I also found out about the correction term. I think that many people discovered this, even before 1800. Your video's encourage me to seek for simple proves myself. The method for the proof of p=a²+b², can be extended for all natural numbers. You can prove that numbers that shouldn't be written as sum of two squares, have an even number of representations. Next, you parameterise n=a²+b²=c²+d², to show that n is the product of two numbers (greater than one), as the sum of two squares. Next, you can say that we had the lowest number that works (with some extra things), to finish the prove.
@hugo32222 жыл бұрын
To answer your question about other countries (although you might already know this): Suggesting to include something like Heron's formula into the mathematics curriculum in Germany would make the other commission members look at you as if you had told them to leave the building because a marsian space ship has landed on the roof.
@bjornfeuerbacher55142 жыл бұрын
When I was at the Gymnasium in Germany, in 9th grade, approx. 1990, the formula was included in the problem section of the book we used (Lambacher Schweizer). If I remember correctly, the problem even consisted in proving the formula (given many hints on how to proceed).
@hugo32222 жыл бұрын
@@bjornfeuerbacher5514 Yeah, that was long ago. Lambacher Schweizer is still there, but anything beyond "draw a rectangle around the triangle and compute half the area of it" is nowadays beyond expected student abilities regarding "proofs". (Actually, most students don't even (need to) get the difference between "proving" and "using" the formula.) Fun fact: Just last week I was asked to comment on a complaint of several principals (obviously urged by students and parents) about the recent "Abitur" in the state of Niedersachsen. One of the exam tasks could not be solved by the students, because they had to calculate the area of a triangle without being allowed to look up the formula (one part of the exam is to be solved with pen and paper only).
@Mathologer2 жыл бұрын
@@hugo3222 Did you know that I actually grew up in Germany? That last fun fact is actually pretty depressing.
@hugo32222 жыл бұрын
@@Mathologer What's going on here? My answer disappeared twice.
@nikisurf20392 жыл бұрын
Absolutely adorable video! My new best of bests and favourite mathematical videos I 've ever seen anywhere - and absolutely love the 4th dimension Heronic geometry and calculations and Brahmagupta extensions and even further ones are incredible - I absolutely adored this video now that I 've watched! Would really like to see more aside about pentagons specifically regular or not - I basically love them - and maybe about octagons where there 's the silver ratio also - one not any less peculiar one I love this channel just as always so far! Absolutely loved this video is just the shortest reply - how do you even make them so awesome! This Heron ways are absolutely outstanding and there 's something amazing about the way the golden ratio is somehow hidden in the regular pentagon still looking for the secrets of the pyramids worldwide and wonder if they really no longer work as they did in ancient times! I love this channel is really the point! :)
@SwordQuake22 жыл бұрын
We were taught Heron's formula in Bulgaria. And half the perimeter is denoted as p, not S. That's the area.
@indus78412 жыл бұрын
Its just notation, the letters truely do not matter in the slightest.
@tenix66982 жыл бұрын
We were given Heron's formula in Poland as a side note, but our teacher still went over it. The sum (a + b + c) / 2 was also denoted as p.
@wasmic5z2 жыл бұрын
Here in Denmark, the half perimeter was denoted with small s, and the area is A. It most probably depends on your language.
@GianniCampanale2 жыл бұрын
in Italia we learn to denote the perimeter as "2p" in school long before we encounter the semiperimeter in formulas (and it of course is p).
@EebstertheGreat2 жыл бұрын
Even some articles written in English use p (but usually by authors who don't speak English natively). In English-language textbooks, it's usually a lowercase s. Rarely, you might see it with no s at all, in the fully expanded form in terms of a, b, and c.
@anon65142 жыл бұрын
13:00 A Trig-free method: You just need Pythagoras and simultaneous equations Area = (1/2) B h Cut B with a line from the apex ... B = f + g Pythagoras ... hh = AA - gg = CC - ff Rearranging gives us the relationship between A, C and f, g ... AA - CC = gg - ff A second equation can be found by squaring B ... BB = gg + 2fg + ff Adding these equations together ... AA+BB-CC = 2g (f+g) using the fact that f + g = B ... g = (AA+BB-CC) / 2 B using hh = AA - gg gives... hh = AA - (AA+BB-CC) (AA+BB-CC) / 4 BB or as you wrote it : hh = AA[ 1 - (AA+BB-CC) (AA+BB-CC) / 4 AABB ] giving us an area of: Area = (1/2) B A sqrt [ 1 - (AA+BB-CC) (AA+BB-CC) / 4 AABB ]
@Mathologer2 жыл бұрын
Yes, but not as straightforward as the trig approach. I've also got a link to a Pythagoras writeup (possibly the original one) in the description of this video :)
@fghsgh2 жыл бұрын
I was taught Heron's formula in Belgian high school. 12th grade, the most intensive math option they had (8 hours/week). And only as a side tangent, without proof.
@richardschreier38662 жыл бұрын
The remarkable fact that a 3-4-5 triangle has an incircle of radius 1 was new to me. It just goes to show that Truth can be sitting there, just 1 step away, and you may not see it-- for decades. I am both humbled and joyous whenever Mathologer opens my eyes in this way.
@HA7DN2 жыл бұрын
Took me way too long to realize that I've already learned some of this (nearly all to the cyvlic quads, including proofs for them) in highschool (special, math-heavy class, it is not in the base material)
@bencemagasi23332 жыл бұрын
2:32 Because phi is defined as the number that satisfies this equation: x=(1/x)+1., therefore 2*x*[(1/x)+1]=2*(x+1)=2x+2. So this means that the left side of the equation is the same as the right side of the equation.
@stephaneduhamel77062 жыл бұрын
25:02 small typing mistake here inside the third pair of parethsesis, you wrote "A+B+D-B" instead of "A+C+D-B"
@echuidor Жыл бұрын
Love how you coloured "Brahmagupta's Formula" at the end (25:05) using the Indian tricolour! :D
@gianmarcopuleo28592 жыл бұрын
In Italy, heron's formula is taught in the middle school, when pupils are about 12 years old. Many among them will forget it forever, some of them see it again in high school.
@Mathologer2 жыл бұрын
I actually wasn't taught the formula in high school but when I stumbled across it myself I still remember it making a big impression on me :)
@sohampine73042 жыл бұрын
In India about age 11-12
@NoActuallyGo-KCUF-Yourself2 жыл бұрын
Teaching mathematics of that level to children of that age is a waste of time. Until ~ age 13-14, most children haven't developed the abstract reasoning enough for anything beyond numeric arithmetic. It would be better to start teaching logical reasoning sooner, so kids don't freak out when asked to write proofs.
@sohampine73042 жыл бұрын
Its india bro Most finest mathematicians like ramanujan,aryabhatta were born here We have their blood running bro..
@tinkeringtim79996 ай бұрын
That was a really excellent video, elegant maths and presentation. This goes in the "best of" category.
@pascalschneider57992 жыл бұрын
Actually Herons method for approximating square roots is still taught here in Germany from time to time, depending on the teacher.
@Mathologer2 жыл бұрын
Interesting. I actually grew up in Germany and was never taught anything due to Heron :(
@godfreypigott2 жыл бұрын
@@Mathologer How long did you live in Germany, and how long have you been in Australia? (I promise to avoid my natural inclination to add any numbers I see.)
@Mathologer2 жыл бұрын
@@godfreypigott I grew up in Germany, did military service there, a bit of uni and then spent a couple of years studying and postdocing abroad. I've been in Australia since 1995 :)
@godfreypigott2 жыл бұрын
@@Mathologer But you chose Melbourne - WHHHYYYY? Sydney is quintessential Australia. Oh wait ... then you might have had to work with Norman Wildberger ... I think I understand.
@jasperiscool2 жыл бұрын
The 20eth minute gave me the most satisfied feeling since a long time. ♥
@Mathologer2 жыл бұрын
If you liked that you'll probably also like this proof of Pythagoras's theorem kzbin.info/www/bejne/qGXKgJ-qqdN9lac I also featured this earlier in a video on this main channel kzbin.info/www/bejne/qGXKgJ-qqdN9lac
@jasperiscool2 жыл бұрын
@@Mathologer Thanks! It immediately reminded me of this one, of course. The one in this Heron’s formula video was just perfectly timed for some reason. And might I say, just that extra tad more magical.
@Mathologer2 жыл бұрын
@@jasperiscool Yes, an absolute beauty :)
@prometheus73872 жыл бұрын
This is truly some mind boggling math Also Heron's formula isn't really taught in school here in Singapore, except in Math Olympiads.
@aaronnorman97552 жыл бұрын
The intuition this video provides is incredibly beautiful. Thank you very much!!
@oleksandr45462 жыл бұрын
I'm Ukrainian. We did learn Heron's formula and used it a couple of times. Just enough to still remember it.
@bowtangey68302 жыл бұрын
I earned a PhD in mathematics in the U.S. but was unaware of Heron's formula until reading William Dunham's great "Journey through Genius." And then you say there's a formula. for. the. area. of. ANY. quadrilateral. (convex or not) Thank you, Mathologer!!! 💥💥💥 ❤❤❤
@nugboy4202 жыл бұрын
I want that shirt man lol
@sumedhmhaiskar4192 жыл бұрын
The ending izz soo elegant, the music, the animation, and the proof……
@celts37602 жыл бұрын
I love Mathologer's videos. His videos are very informative and great for anyone who has an affinity for math. That being said, I also LOVE his shirts. I like to collect witty t-shirts, and his make me jealous that I don't have them!
@ultimatewierdness2 жыл бұрын
I teach math and introduced Heron's formula as part of an exam question. There the students had to use the formula to calculate the area of a triangle with sides 2, 7 and 11 cm. The trick about this question is that this is an impossible triangle (A+B < C), which quite beautifully does not work in Heron's formula as you get the square root of a negative number. Sadly nobody figured out that the question itself was incorrect and probably assumed that the fault was either in the formula itself, or in their calculations. Once the solution became known I got some complaints about it (lol), but I think they learnt a good lesson.
@jacoboribilik32532 жыл бұрын
Very cool video! The area under the bell curve also deserves a video in this awesome channel!
@jerrys34402 жыл бұрын
I learned Heron's formula in a math formula book without knowing the name Heron or proof. Glad to see this simple proof! thank you a lot.
@christianorlandosilvaforer34512 жыл бұрын
amazing as ever... mathologer the best channel on maths... greetings from colombia. Love u
@ruferd2 жыл бұрын
I teach Art of Problem Solving Geometry and I've taught the proof of Herons formula and even the Area=(perimeter • inradius)/2 for years. I never even thought that perimeter/2 is S from Herons formula. I had no idea there was a connection and my mind was blown at every step along this beautiful journey.
@nanamacapagal83422 жыл бұрын
11:08 Challenges! 1. Idk your choice 2. Campaign probably means politics is involved 3. You get the wrong answer out the other end. Proof: try it on a unit square but with two vertices switched. The area should be 1/2 but what comes out the other end of the equation is 0 4. No. Maybe later but it's 1 AM and I don't feel like doing it now
@Mathologer2 жыл бұрын
Interesting :) Actually the real reason is that RGB and ABC both have a B. Even by using RGP instead there was still the slight issue that I also had to juggle both R and little r. And that's why Marty wanted me to go for yet another colour.
@olafjedicke74942 жыл бұрын
I very much appreciate and like the mathematical contributions of this group; no doubt instructive and inspiring. Be that as it may, it always remains recognisable that the numbers assumed as an approach mostly coming out of the blue, and have not been calculated. But that does not diminish the contributions in any way!
@chaoslab2 жыл бұрын
So love this channel, never thought I would giggle and grin so much to mathematics.
@nurulc2 жыл бұрын
The final section, the proof of bhrama gupta formula is so beautiful a soothing. Thank you.
@trapkat82132 жыл бұрын
I wish my math lectures at university were like this. The animations are insanely good.
@TheTedder2 жыл бұрын
I live in America and learned this in my second or third year in highschool. Very cool seeing some more info about all these years later.
@royalninja28232 жыл бұрын
At a rural high school in PA a few years ago, I was taught Heron's Formula in a Trigonometry class.
@HIMANSHU-yb1qt2 жыл бұрын
Such a great video, hats off to you, you never made me satisfied with what I study. You bring us such a great content Thanks man 🙌👀💓
@asamenechbayissa5532 жыл бұрын
I learnt about heron's formula in 9th grade but our textbooks didn't give a proof of it. Luckily our math teacher didn't like that and he showed us a proof of it by deriving it with just algebra. The geometric proof in the video was something I've never seen before, it is really nice.
@01binaryboy2 жыл бұрын
I am great fan of Alexander Bogomolny - Author of Cut the knot... He is no more now , but his applet work speaks his name always. Thanks for the APPLET CHROME EXTENSION suggestion. I can run back all applets now.
@realcygnus2 жыл бұрын
Good one as per usual. Strange that such a cool channel hasn't reached 1M subs after so long. Not sure it helps but I always at least hit 👍.