How to complete the square (when solving quadratic equations)

  Рет қаралды 19,865

bprp math basics

bprp math basics

Күн бұрын

Пікірлер: 44
@bprpmathbasics
@bprpmathbasics Жыл бұрын
When should we use completing the square instead of the quadratic formula? 👇 kzbin.info/www/bejne/a4qWlYmOnsx8eKs
@HeavenisnttooFarAway-
@HeavenisnttooFarAway- Жыл бұрын
What happens to the 25 that you added to the left hand side of the equation?
@earlthepearl3922
@earlthepearl3922 Жыл бұрын
I have never seen this “box” approach to solving for X before. Pretty cool.
@muneebmuhamed43
@muneebmuhamed43 Жыл бұрын
btw, the quadratic formula is derived using this. There's a video by "Mind Your Decisions". It's pretty old but explains it well.
@HeavenisnttooFarAway-
@HeavenisnttooFarAway- Жыл бұрын
Me neither, excellent video
@jaspertyler4557
@jaspertyler4557 11 ай бұрын
i learned about completing the square in ordinary differential equations. the most confusing math class i've ever taken.
@samiunalimsaadofficial
@samiunalimsaadofficial 10 ай бұрын
Get ready for PDEs​@@jaspertyler4557
@chocolateangel8743
@chocolateangel8743 7 ай бұрын
It's called an area model. You can use them to do quite a few things. When you understand (and get practice with them), they really allow you to conceptualize things, so there is less to memorize.
@MurseSamson
@MurseSamson Жыл бұрын
Awesome. Thanks for the history video as well. I can see based on this how geometry lead to algebra, and eventually conundrums like "+- √x" that lead to the use of the plot graph solutions & proofs, and eventually, calculus. What a great video! Would love to see more of these historically contentious math terms!
@bprpmathbasics
@bprpmathbasics Жыл бұрын
Thank you so much!
@Monitorbread
@Monitorbread 9 ай бұрын
this is the best math channel ever and made understanding the whole completing the square so easily. thank you so much for making these cool videos
@kambaakapanga9629
@kambaakapanga9629 9 ай бұрын
On point, not too much talking. Great video. Thank you
@EverythingIsLit
@EverythingIsLit 11 ай бұрын
This would have made it so much easier to conceptualize in school!
@kganyamphahlele9777
@kganyamphahlele9777 17 күн бұрын
Fantastic explanation. Thank you, sir.
@rigbyb
@rigbyb Жыл бұрын
You are the best math KZbinr 😊
@EdwardCurrent
@EdwardCurrent 6 ай бұрын
Brilliant explanation. I'm so jealous of kids today -- and teachers today! -- who can get these great explanations and learning methods at home for free. This geometric demonstration reminded me of 3blue1brown's geometric treatments of linear algebra. So cool.
@ratty_robloxian
@ratty_robloxian 10 ай бұрын
Hey, I love your videos! You actually helped me pass my maths exam with a random exercise, and I thank you alot!! (keep the good work up, love ur channel🔥🔥💯)
@yakkoindy
@yakkoindy 10 ай бұрын
damn who knew that actually explaining the concept instead of just listing steps aimlessly would make me actually fucking learn this concept 😭😭😭 thank you
@SeegalMasterPlayz
@SeegalMasterPlayz Жыл бұрын
This was also visualised in my Mathematics B Edexcel International GCSE study text.
@AzureKyle
@AzureKyle 8 ай бұрын
This is a neat way of doing it. Of course, you could always do it algebraically, by subtracting 24 from both sides, getting x^2+10x-24, which can be factored out to (x-2) and (x+12), giving us the answers of x=2 and x=-12.
@dikdndkshxnd7864
@dikdndkshxnd7864 6 ай бұрын
Thank you thank you sooooooooooooooo much you saved me from the exam
@alexmargrey
@alexmargrey 6 ай бұрын
Thank you, proffesor
@Areco777
@Areco777 Жыл бұрын
can you please post the solution to sqrt(1/x^2 - 1/x^3) + sqrt(1/x - 1/x^3) = 1 without just squaring both side and making it very long.
@youngmathematician9154
@youngmathematician9154 Жыл бұрын
Here is how I did it (it does use squaring both sides but it's not that long, don't worry :)) : First, let t=1/x. Our equation becomes sqrt(t^2-t^3)+sqrt(t-t^3)=1. We will now make a series of algebraic manipulations: Isolate sqrt(t^2-t^3): sqrt(t^2-t^3)=1-sqrt(t-t^3) Square both sides: t^2-t^3=1+t-t^3-2sqrt(t-t^3) Cancel the t^3 terms and isolate 2sqrt(t-t^3): t^2-t-1=-2sqrt(t-t^3) Square both sides again: t^4-2t^3-t^2+2t+1=4t-4t^3 Move everything to the LHS: t^4+2t^3-t^2-2t+1=0 Notice our LHS looks a lot like t^4-2t^3-t^2+2t+1, which we know is equal to (t^2-t-1)^2 since we worked it out earlier. This motivates us to introduce the substitution t=-y. Our equation then becomes y^4-2y^3-y^2+2y+1=0, which factors as (y^2-y-1)^2=0, which is equivalent to y^2-y-1=0. Solving this quadratic equation gives us y=(1+-sqrt(5))/2. Since t=-y=1/x (our substitutions from earlier), we have x=-1/y. Therefore, x=-1/((1+-sqrt(5))/2)=-2/(1+-sqrt(5)). Rationalizing the denominator gives x=-2/(1+-sqrt(5))*(1-+sqrt(5))/(1-+sqrt(5))=-2(1-+sqrt(5))/(-4)=(1+sqrt(5))/2. Hence, x=(1+sqrt(5))/2 or x=(1-sqrt(5))/2. However, we have to reject the second solution since it makes the second square root in the original equation a complex number. Therefore, the only solution x=(1+sqrt(5))/2, which just so happens to be the golden ratio!
@RoachRider666
@RoachRider666 Жыл бұрын
Interesting analysis
@malforon4893
@malforon4893 Жыл бұрын
Very helpful, thanks
@amo5825
@amo5825 Ай бұрын
LING PING HO WE LOVE YOU
@AyushTomar-wp3is
@AyushTomar-wp3is Жыл бұрын
The equation i.e ((1/√(x!-1)+1/x^2)! It surprisingly approaches to 0.999. For x>2 lim x→∞ I would really appreciate you if you check it and I would like to ask can this be constant which is mine?
@kmjohnny
@kmjohnny Жыл бұрын
Quadratic solution now kinda makes sense geometrically - it's just a question if I want to add or remove from x square
@johanndohmann1281
@johanndohmann1281 Жыл бұрын
you are a genius!
@sensetivemasochist4887
@sensetivemasochist4887 2 ай бұрын
you are goated thank you
@liamathew3260
@liamathew3260 5 ай бұрын
i finally know why it is in fact called "complete the square"
@adamdevmedia
@adamdevmedia 11 ай бұрын
I like to define perfect squares first and then you just use c=(b/2)^2 and see what's extra
@channelbuattv
@channelbuattv Жыл бұрын
why do we always assume that x is greater than the number?
@zemyaso
@zemyaso Жыл бұрын
Graphs are not gonna be 100% accurate. If x was < or > or = the number, then just draw the x accordingly. This is just to get the idea of where completing the square comes from.
@channelbuattv
@channelbuattv Жыл бұрын
@@zemyaso When people draw (a±b)² sometimes they assume either a>b or a
@bprpmathbasics
@bprpmathbasics Жыл бұрын
It doesn’t matter. I could have done a smaller square first then a bigger one. 😃
@channelbuattv
@channelbuattv Жыл бұрын
@@bprpmathbasics Divide by 2 or multiply by ½?
@ngocdo5687
@ngocdo5687 7 күн бұрын
XX + 10X = 24 * XX + 10X - 24 = 0 24 = 2x12 = 3x8 = 4x6 12 - 2 = 4 + 6 = 10 = (b) ** 12: 12x12 + 10x12 - 24 144 + 120 - 24 # 0 -12:(-12x-12)+10(-12)-24 144 - 120 - 24 = 0 ** 2: 2x2 + 10x2 - 24 4 + 20 - 24 = 0 *** X' = 2 , X" = -12./.
@erikhalvorseth3950
@erikhalvorseth3950 4 ай бұрын
Lovely. But I miss smth on the top line, the actual reasoning why our ancestors did this. Not only the left hand side of the original equation represent an area, but the right also. The geometric object with area X^2 + the geometric object with area 10*X equals the geometric object with area 24. Imagine you are an Egyptian geometer. To get algebraic solutions to area problems is his task.
@APUS_NUNN
@APUS_NUNN Жыл бұрын
... Und jetzt noch den Zusammenhang zwischen x=2 und der Abbildung... bzw x=-12 und der Abbildung 😮.....
@Momolaranya
@Momolaranya 10 ай бұрын
im not confused any longer
@kavinesh_the_legend
@kavinesh_the_legend 11 ай бұрын
And now I'm confused
@blissard96
@blissard96 11 ай бұрын
! warning do not trust this guy !
Completing the square (step by step instruction & visual illustration)
7:57
Completing the Square & Solving Quadratic Equations in Algebra
21:25
Math and Science
Рет қаралды 7 М.
Quando A Diferença De Altura É Muito Grande 😲😂
00:12
Mari Maria
Рет қаралды 44 МЛН
Proving the pq formula for solving quadratic equations
8:51
bprp math basics
Рет қаралды 50 М.
Why do we "complete the square"?
9:50
MindYourDecisions
Рет қаралды 1,2 МЛН
3 ways to "complete the square"
8:54
blackpenredpen
Рет қаралды 118 М.
Beautiful Visual Explanation of Completing the Square
3:34
Eddie Woo
Рет қаралды 180 М.
Can you solve this Cambridge Entrance Exam Question?
24:48
Higher Mathematics
Рет қаралды 1 МЛН
Solving Quadratics by Completing the Square
7:32
Professor Dave Explains
Рет қаралды 89 М.