Have you impressed your teachers (or students) yet???
@Ashmit_17293 жыл бұрын
Yes by factoring 2
@davidbrisbane72063 жыл бұрын
Yes indeed. When I showed them how to use Wolfram Alpha to solve quatratic equations 😁.
@أميرالبلابل3 жыл бұрын
Yeah, when I correct my teacher hahahah
@invaderzim68423 жыл бұрын
Hi ,blackpenredpen!I really enjoy your content. I’ll very much appreciate if u can solve me this problem Find x for:2^((sin(x))^2014)-2^((cos(x))^2014)=(cos(2x))^2013 I know it is a tough problem ,but I really want to know the way to solve this kind of problem 😅
@sbusisoquintin80043 жыл бұрын
Not yet we are waiting for them😅💯 Support from South Africa🇿🇦
@shaurya16163 жыл бұрын
I think his immense knowledge comes from the pokeball.
@yensteel3 жыл бұрын
Agreed
@mama54023 жыл бұрын
I guess that's why he looks like a pokemon xd...
@arjunsahu25433 жыл бұрын
😂🤣🤣
@williamsmamanimamani8463 жыл бұрын
Estoy totalmente de acuerdo, mi estimado
@xxmysticexpertxx1133 жыл бұрын
Pikachu tellin him the answers
@justacityboy44263 жыл бұрын
Math is basically magic, but without all the magic
@Exahax1013 жыл бұрын
It's logic not magic!
@SofronPolitis3 жыл бұрын
That's why it's called mathemagics
@Felixrizzlord3 жыл бұрын
@@Exahax101 yes
@E12345E3 жыл бұрын
Given: Math is basically magic, but without all the magic Prove: Magic doesn’t exist math = magic Given math - magic = magic Given magic - magic = magic substitution POE 0 = magic Simplify this proves that magic does not exist
@johnbiluke84063 жыл бұрын
@@E12345E (YEAH, YOU IN THE CROWD, CAN YOU SPOT THE MISTAKE?)
@markdougherty82033 жыл бұрын
Method 3 is just completing the square from the other side. By symmetry it works the same. It's a cool trick though, because most people don't expect it. I have surprised people with it before. Obviously it's more convenient if the units term is a perfect square.
@SyberMath3 жыл бұрын
You have a way with Complex Numbers! Nice work!!! 🤩
@blackpenredpen3 жыл бұрын
Thanks! 😃
@SyberMath3 жыл бұрын
@@blackpenredpen My pleasure! 😊
@vivekbhutada30493 жыл бұрын
Hey syber! Big fan here!!
@erikmensinga3 жыл бұрын
@marine dtadtfeld bruh no why
@AliKhanMaths3 жыл бұрын
I love the second way the most - looks so clean! You've really inspired me to share my maths tricks too!
@idrisShiningTimes3 жыл бұрын
I loved the first method honestly, since I'm basically used to solving fractions, and it gives out the answer in simplest form most of the time.
@shuvo15623 жыл бұрын
Type 3 seems new to me!Every time I learn something new from your videos.
@beaming_sparkling_trash2613 жыл бұрын
I'm in love w the third method
@Firefly2563 жыл бұрын
Irrational Denominator to rational = rationalize Imaginary denominator to real = realize
@blackpenredpen3 жыл бұрын
Try this cubic x^3-3x^2-3x-1=0 Hint: it's kinda similar to the 3rd way in this video. Solution: kzbin.info/www/bejne/gKuQi2Ogm9hljJY
@crispyclips62683 жыл бұрын
Bro can you please post some videos on calculus (majorly integral calculus) and functional equations too As I am preparing for jee advanced and the questions need practice for developing that approach. How to contact you ?
@crispyclips62683 жыл бұрын
And more questions like this one kzbin.info/www/bejne/aandk2B_pr53fM0
@4ltrz5553 жыл бұрын
@@crispyclips6268 he has made a lot of integration speedruns and long runs. You can check it out in his playlists
@crispyclips62683 жыл бұрын
OK thanks
@RazorM973 жыл бұрын
At 5:45 i thought you were going to say, "let's delete that two and it will work out nicely". Man I was so wrong XD
@blackpenredpen3 жыл бұрын
Do you have a different way to complete the square for this equation?
@ryancantpvp3 жыл бұрын
No because the video is still premiering lol!
@purushothaman66983 жыл бұрын
No
@mathevengers11313 жыл бұрын
Fourth method: Use quadratic formula Fifth way: Tell πkachu to use thunderbolt
@beastgamer49323 жыл бұрын
how do you use quadratic formula to complete the square
@davidbrisbane72063 жыл бұрын
We can set x = 1/y, as x = 0 is not a solution. So, 2x² + 6x + 9 = 0 is transformed into 9y² + 6y + 2 = 0 So, 36y² + 24y + 8 = 0 So, (6y + 2)² = -4 So, 6y + 2 = ±2i So, 3y = -1 ± i So, y = (-1 ± i)/3 So, x = 3/(-1 ± i) So x = (-3 ± 3i)/2
@MathAdam3 жыл бұрын
Next video: 3 Ways to Complete the Pikachu
@anshumanagrawal3463 жыл бұрын
Yeesss
@paulg4443 жыл бұрын
This guy is the man!!!.. Love his energy!
@prepa-maths3 жыл бұрын
Hello from France !!! Excellent channel !!
@tambuwalmathsclass3 жыл бұрын
I must try this in with my students
@juancarlosquispemamani72383 жыл бұрын
Genial!!! yo soy de Bolivia voy en la carrera de Ingeniería y voy aprendiendo mucho de ti... muchas gracias por compartir tus conocimientos!!!! sigue adelante!!! exitos!!!
@SandeepKumar-dw3sj3 жыл бұрын
Wow you have legend way to solve it
@patrickpablo2173 жыл бұрын
Nice! All three were great :) I'll add another twist that can fit with any of the three. Recently I switched from "completing the square" to "completing the difference of squares" and I like it a lot more. I'll give a basic example: x^2+6x+8=0 proceed as usual but *don't* move anything to the RHS: x^2 + 6x + 3^2 + -(3)^2 + 8 = 0 (x + 3)^2 - ( 3^2 - 8 ) = 0 that second term isn't a square yet but we can write it as one easily: (x + 3)^2 - (√[ 3^2 - 8 ])^2 = 0 Now we have a difference of squares, but let's simplify first: (x + 3)^2 - (√[ 9 - 8 ])^2 = 0 (x + 3)^2 - (√[ 1 ])^2 = 0 (x + 3)^2 - (1)^2 = 0 now difference of squares takes care of the ± automatically and gives (x+3+1)*(x+3-1)=0 (x+4)*(x+2)=0 so x={2,4} I really like this method since you never have to deal with moving things from LHS to RHS or back, and it's more like factoring, and it avoids the ± issue completely. It also has direct relation to the parabola associated with the quadratic: the first of the squares gives the line of symmetry (the x-coordinate of the vertex), and the second one provides the distance to the solutions and the y-coordinate of the vertex. And it saves steps, which is nice.
@patrickpablo2173 жыл бұрын
for this equation 2*x^2 + 6x + 9=0: (doing more arithmetic than necessary, just to not get people lost) 2*x^2+6x+(3/√2)^2 -(3/√2)^2 + 9 =0 (√2*x+(3/√2))^2 - ((3/√2)^2 - 9) = 0 (√2*x+(3/√2))^2 - (9/2 - 9) = 0 (√2*x+(3/√2))^2 - (-9/2) = 0 (√2*x+(3/√2))^2 - (i*3/√2)^2 = 0 [so here next is where we use difference of squares (x^2 - y^2) = (x+y)*(x-y)] ( √2*x+(3/√2) + i*3/√2 ) * ( √2*x+(3/√2) - i*3/√2 ) = 0 [group the constant terms:] (√2*x + (3+i*3)/√2)*(√2*x + (3-i*3)/√2)=0 [you could be done here if you know that if (mx+n)=0 then x must equal -n/m, but if not, pull out a √2 from each factor:] √2*(x+(3+i*3)/2) * √2*(x+(3-i*3)/2)=0 [combine them:] 2*(x+(3+i*3)/2)*(x+(3-i*3)/2)=0 Then we just read off the solutions as normal: x={ -3/2 -(3/2)*i, -3/2+(3/2)*i } which are the same as in the video
@Raizensen94153 жыл бұрын
Best book for all basic concept for algebra
@anandk92203 жыл бұрын
Third method is the best of all time !!! 😘😘😘😘😘😘😘😘😘😘
@Songfugel3 жыл бұрын
2nd one felt most comfortable, since it was close to the normal way to solve it
@danieleferrara5613 жыл бұрын
Last one is the most interesting, thank you
@nychan29393 жыл бұрын
I love the completing square method since I was a child.
@jgrigg17203 жыл бұрын
I honestly love the third way.
@user-my7ki4it3s2 жыл бұрын
First one. But the other two ways were a completely new for me, thanks 😅
@sakib57663 жыл бұрын
3rd method: when u r too crazy for a perfect square
@krishanu-d1k2 жыл бұрын
First and second is best!!
@sueyibaslanli35193 жыл бұрын
Exactly, the third one
@mathstutors91793 жыл бұрын
7:35 What is the difference between “+or-“ and “-or+”
@Crash-yp7ll3 жыл бұрын
If you have two or more of 'these' in eq, always use the top signs together or the bottom two signs together, but never the top and bottom of each together ...
@stephenbeck72223 жыл бұрын
No difference if you only have one of them in the equation. Sometimes we write, for example, the formulas for sum and difference for cosines with a +- on one side and a -+ on the other side to indicate when one side is adding then the other side is subtracting and vice versa.
@Crash-yp7ll3 жыл бұрын
Agree ... - '/ ' always confusing - Doesn't totally mean '+ or -' but maybe better as '+ and -, one at a time, and in that order' ...
@johnbiluke84063 жыл бұрын
I like the Gatorade bottles in the background.
@reda44953 жыл бұрын
Blackpenredpen >>>> any other math's teacher
@durgeshverma81313 жыл бұрын
Hey bro superior literally quite shocked to see the way you solved I'm in 11th and just now studies complex number with quadratic equations.😃😄😄 LOVE from India
@simdriver67973 жыл бұрын
Mind blowing in t-3, t-2, t-1... now!
@aamirakhtar59133 жыл бұрын
We love your explanation 💘😻💜💛💚🧡 . Can you please tell us how you explain. When ever I try to explain any maths problem literally no one got it. You are awesome 👌
@in-ty8vb3 жыл бұрын
I bet your explanation is good,they just don't know math
@electrocode40953 жыл бұрын
There is one another method (How you can forget Shri Dharacharya's Formula 🤨) ax² + bx + c = 0 you can write x =( - b ⨦ √ (b² - 4*a*c) )/(2*a)
@flash.the.dash7653 жыл бұрын
Also known as the quadratic formula
@flash.the.dash7653 жыл бұрын
Apparently there are 3 ways
@AliKhanMaths3 жыл бұрын
Well-remembered! But that's just a derivation of the conventional completing the square method, so I don't think it would count as another method of completing the square.
@electrocode40953 жыл бұрын
@Python Project Academy It can be able to make square just do some math for it i.e. after rearranging of variables and constant it would be (x+ b/2a)² = (b² - 4*a*c )/4*a²
@jimbobago3 жыл бұрын
This formula is simply the generic result from using completing the square on ax^2 + bx + c = 0.
@skyjumper4097Ай бұрын
1:00 where do the 3x go?
@nitish27993 жыл бұрын
1:31 How can a square of any no be -ve?
@siralanturing91033 жыл бұрын
the cheeky smile when black pen says +/- but red pen says -/+
@alpcanakaydn69863 жыл бұрын
additional soluiton: if we multiply each side by 2 it becomes 4x²+12x+18=0 if we complete the perfect square it becomes (2x+3)²+9=0
@Leeanne7503 жыл бұрын
Multiplying by "4a" is safe. (In this case, 8). It will work all the time, not only in this example. ax^2 + bx +c =0 4a^2x^2 + 4abx = -4ac (2ax + b)^2 = -4ac - b^2 .........
@alpcanakaydn69863 жыл бұрын
@@Leeanne750 It works just fine,but my goal is to find other solutions in the question
@angelofelisimolacruz14623 жыл бұрын
@@Leeanne750 Thanks for this approach.
@muhammadnaufalzaky13263 жыл бұрын
Please, upload a video about the del operator, that thing in the vector calculus
@carultch3 жыл бұрын
The del operator is a vector of partial differential operators. When applied to the next function, it is applied in a way that is analogous to either scalar multiplication, dot products, or cross products. Apply del to scalar field f(x,y,z), analogous to scalar multiplication, and we get the gradient of the scalar field. The gradient is a vector field of partial derivatives of the scalar field, which indicates the direction and magnitude of steepest ascent. del f(x,y,z) = Apply del dot to a vector field F(x,y,z), analogous to the dot product, and we get what we call the divergence. This is a measure of sources and sinks in a vector field. An application of this, is Gauss's law. del dot F = dF/dx + dF/dy + dF/dz Apply del cross to a vector field F(x,y,z), analogous to a cross product, and we get what we call curl. This is a measure of the rotationality of a vector field, and a vector field with a curl of zero is called a conservative vector field. A conservative vector field is the gradient of a scalar function. The curl of a vector field is itself a vector field, that will be perpendicular at every point. It indicates that line integrals around closed loops of a vector field are non-zero. An application of curl is Faraday's law of induction and Ampere/Maxwell's law of current and magnetic fields.
@MonzurulHoque31413 жыл бұрын
& That's why I love Mathematics😍😍🤷😁😊😊
@migssir3 жыл бұрын
Your 3rd solution is cool.
@СвободныйУголок3 жыл бұрын
5:10 incredible methods, but one thing I did not understand, why multiply by 8 in the 2nd method? can be multiplied by 2 and get the same result without huge calculations 2(2х^2+6х+9)=0 4х^2+12x+()^2=-18+()^2 12=2*2*3 (2x+3)^2=-18+9 2x+3=+-r(-9) x=(-3+-3i)/2
@dog.31622 жыл бұрын
so it works consistently probably
@mathysicssaransh79393 жыл бұрын
Can u make a video explaining the graphical meaning of integration by substitution...more specifically .. integration by trigonometric substitution..?
@carultch3 жыл бұрын
It means that you can recognize the integrand, as part of a term made from the Pythagorean theorem, in order to re-write a complicated term as a trig function that you can integrate. For instance: integral of dx/sqrt(1 - x^2) Draw a right triangle with (1-x^2) as one of its legs The remaining side will be x and the hypotenuse will be 1 This enables you to define an angle on this triangle, in order for 1/sqrt(1-x^2) to be a trigonometric ratio of the angle you define.
@bhgtree3 жыл бұрын
"don't like fractions......when they see fractions 90% of them freak out." And thats only the teachers :)
@kokichioma14083 жыл бұрын
I'm new subscriber here.
@dr.rahulgupta75732 жыл бұрын
Sir (( d/dx) LHS )^2 = D , where D is discriminant of L HS function . This gives the answer immediately. i.e. (4x+6)^2 = -- 36 or 4x+6 = +6i or 4x +6 = --6i .
@mokouf33 жыл бұрын
3rd way is cleanest.
@EynkiYoom3 жыл бұрын
Damn. Nice!!!!
@glennn.micarandayo86573 жыл бұрын
Just curious of the formula table on the background
@daiyousei.15863 жыл бұрын
This is so efficient holy sht Method 2 is my fav
@ericthecuberspeedcuber3 жыл бұрын
5:46 "Wouldn't it be nice"
@denilsoncosta314153 жыл бұрын
Suggest 4th method to replace x by y-b/2a which is also cool.
@qureshisiddig92743 жыл бұрын
How amazing is that you keep superise me wow
@sanadsingh71043 жыл бұрын
Sir, can you tell me how to find the length of curve of sin x from 0 to pi
@3r3nite983 жыл бұрын
This is very cool.
@noreldenzenky15273 жыл бұрын
perfect
@zerilioner6393 жыл бұрын
Hello, I have one math question:Find the equation of the tangent to the curve y =cos^2 x when x=π/3 . Your solution should use radian measure. I kind of figured out m=-√3/2and y=1/4. Is the equation how to solve? Is it 1/4=√3/2(x-π/3)+y? Can you explain this question?
@FaerieDragonZook3 жыл бұрын
Since there is a constant term, x=0 is not a solution. Thus, you can divide both sides by x^2. Then make the substitution y = 1/x, and do complete the squares in y. This makes the third way look like the first
@nory24413 жыл бұрын
Hey bprp love from India nice videos can you plz make 100 limits in 1 take plz I commented before but u din't see
@willbishop13553 жыл бұрын
I do really like the 3rd way, although as you said it won't always work.
@PeetaN3 жыл бұрын
I prefer the first that we can use everytime :)
@GDPlainA3 жыл бұрын
7:21 I cant unsee that -+ looking like a villager
@prashanthkumar03 жыл бұрын
all the methods were good but i still like quadratic formula :P
@helloitsme39583 жыл бұрын
hey bro i need help 1/a+a=b find 1/a^n+a^n in term b thanks
@ouidadelbojaddaini14323 жыл бұрын
How can we thank you?
@professoraxolotl89603 жыл бұрын
3:58 I'm a math teacher and the same thing happens to me quite a lot, I want to ask for something but I say the answer hahaha
@eliasmazhukin20093 жыл бұрын
In fact, way #2 is the way people were doing it in India in the 11th century!
@johndanielvillanueva86043 жыл бұрын
Awesome
@GDPlainA3 жыл бұрын
the 2nd way is basically going from the quadratic formula to the base form
@StephanvanIngen3 жыл бұрын
Beautiful
@BlessingIduh2 жыл бұрын
I prefer the third way
@omograbi3 жыл бұрын
There was a forth way you mentioned in other vids where you reduced the equation in a table and then multiplied the contents of the table.
@robertveith6383 Жыл бұрын
*@ blackpenredpen* -- Treat the constant 3 as the variable from the start: 9 + 6x + 2x^2 = 0 ---> (3)^2 + 2x(3) + ______ = -2x^2 + ______ ---> (3)^2 + 2x(3) + x^2 = -2x^2 + x^2 ---> (3 + x)^2 = -x^2. Then, proceed as you did with the rest of Method 3.
@particleonazock22463 жыл бұрын
Just if you didn't know: bprp drilled a square peg in the round hole of his Pokeball. This enabled him to complete the square, in his niche field of mathematics.
@DownDance3 жыл бұрын
I like that you say with multiply everybody... Like these are humans
@thengodpbot78923 жыл бұрын
can you do IMO 2021
@arcader303 жыл бұрын
4th way, use QUADRATIC FORMULA!! 😁😁
@jimbobago3 жыл бұрын
But the only reason the quadratic formula exists is ... completing the square ... which is the point of the video.
@blandon933 жыл бұрын
Is there a way where one of x is equal to i or -i? I calculated one imaginary root which is close to -i (like -0,98i), I wonder if we ever can achieve whole i number.
@flash.the.dash7653 жыл бұрын
The letter 'i'is basically an imaginary number since its not possible to solve the negative root. However if you write it as '-i' it'll simply cancels the negatives of root and the letter i and results in positive root
@MohammadIbrahim-sq1xn2 жыл бұрын
=(x+i)(x+k) =x²+x(i+k)+ ik
@arshadalam3 жыл бұрын
Simply use quadratic formula
@marbangens3 жыл бұрын
the 3rd way, because 1+1 is fun :)
@matejcataric22593 жыл бұрын
I love math4fun and I love bprp and I love math
@aryangupta70923 жыл бұрын
Can u find the remainder when 17^(63) is divided by 1000
@aashsyed12773 жыл бұрын
Cool video! Thanks so much for these joyful moments ❤️nice work!
@egorsuzopov24193 жыл бұрын
Good day. Here in Russia we solve that equations in school way with Discriminant, which is: D = b^2 - 4ac. And the x1 & x2 = (- b ± i*√D)/2a. Much faster!
@chitramc72383 жыл бұрын
Same
@robertveith6383 Жыл бұрын
Write 2a inside of parentheses when it is in the denominator.
@thengodpbot78923 жыл бұрын
Do you know general way to complete cube equation
@XAHMED5A3 жыл бұрын
prove that from L.H.S (secA.secB.cscA.cscB)/(cscA.cscB - secA.secB) = sec(A+B)
@pribato3 жыл бұрын
Are you from Singapore?
@aweebthatlovesmath42202 жыл бұрын
China
@rikthecuber3 жыл бұрын
DO SOME DIFFERENTIAL EQNS BPRP!
@blackpenredpen3 жыл бұрын
What's a differential equation? jk, here's the diff eq marathon: kzbin.info/www/bejne/m17Ghaydg8d4i6c
@durgeshverma81313 жыл бұрын
He means to use calculus method.
@klausbuda79223 жыл бұрын
I would use the quadratic equation to solve it
@jimbobago3 жыл бұрын
But you need completing the square to develop the quadratic formula in the first place.
@GreenMeansGOF3 жыл бұрын
I disagree with method 3. Square root of x^2 is the absolute value when x is real. However, x is not necessarily real and is actually complex and non-real. I do not think sqrt(x^2)=+/-x is valid. I could be wrong, however. And yes, I acknowledge that you arrive at the correct answer but that does not mean that the method is valid.
@MathNerd17293 жыл бұрын
Well, the square roots of -x² could be ix or -ix. The principal root could be either one of these, yet because of the ±, both possibilities are covered! :)
@simplevc29803 жыл бұрын
First way
@DudsO_o3 жыл бұрын
although hating fractions, I prefer the first one
@chocolateangel87433 жыл бұрын
If you hate fractions, you should check out the fraction series that Dr. James Tanton has on his channel. He's a mathematics educator and researcher that's big on teaching the mathematical logic and concepts behind things. He believes that the more a student understands, the less he or she has to memorize. He deals with fractions differently than most people.
@holyshit9223 жыл бұрын
For cubic equation ------------------------------------------ In book written in my native language in XVIII century there is following way Let's start from equation x^3+px+q=0 Move terms with x and constant to the other side x^3=-px-q Let's complete cube with free variable x^3+3x^2z+3xz^2+z^3=3x^2z+3xz^2+z^3-px-q (x+z)^3=(3xz+3z^2-p)x+z^3-q Now suppose that 3xz+3z^2-p=0 3z(x+z)=p x+z=p/(3z) p^3/(27z^3)=z^3-q z^6-qz^3-p^3/27=0 and we have quadratic in z^3 Interesting way for cubic which I saw on math forum uses sum of cubes identity x^3+px+q=A(x+m)^3+B(x+n)^3 Expand these cubes , compare coefficients and you will get system of equations to solve
@MathNerd17293 жыл бұрын
I just found out how the last way generalizes! It's quite fun! :) Start with: ax² + bx + c = 0 (c ≠ 0) Move the ax² term: bx + c = -ax² Multiply by 4c: 4bcx + 4c² = -4acx² Add b²x² and factor: b²x² + 4bcx + 4c² = (b² - 4ac)x² (bx + 2c)² = (b² - 4ac)x² Take the square root: bx + 2c = ± √(b² - 4ac) x Solve for x and rationalize the denominator to get the usual Quadratic Formula! :) Footnote: Apologies to BPRP about my previous comment; I meant the last way and didn't know how to tell you I made a typo! Additional note: The formula we get before rationalizing the denominator is known as the citardauq formula (That's quadratic backwards!)
@karma_kun98333 жыл бұрын
(Odd+Odd+Odd=Even)? Can we prove that's right or not?
@Amar-zw5md3 жыл бұрын
IIT Advance aspirants be like : We had few more ways left to solve that :)
@crispyclips62683 жыл бұрын
👍👍
@Atreyaa4993 жыл бұрын
By simple quadratic formula 🤣😂😂🤣🤣
@ruceblee9693 жыл бұрын
I heard that pop 3:24. Maybe go see a chiropractor...
@arirooz62403 жыл бұрын
Oh the 🦒 is concentrated at class. It's so cute. This is a importand method about trinomious. TK