3 ways to "complete the square"

  Рет қаралды 118,166

blackpenredpen

blackpenredpen

Күн бұрын

Пікірлер: 295
@blackpenredpen
@blackpenredpen 3 жыл бұрын
Have you impressed your teachers (or students) yet???
@Ashmit_1729
@Ashmit_1729 3 жыл бұрын
Yes by factoring 2
@davidbrisbane7206
@davidbrisbane7206 3 жыл бұрын
Yes indeed. When I showed them how to use Wolfram Alpha to solve quatratic equations 😁.
@أميرالبلابل
@أميرالبلابل 3 жыл бұрын
Yeah, when I correct my teacher hahahah
@invaderzim6842
@invaderzim6842 3 жыл бұрын
Hi ,blackpenredpen!I really enjoy your content. I’ll very much appreciate if u can solve me this problem Find x for:2^((sin(x))^2014)-2^((cos(x))^2014)=(cos(2x))^2013 I know it is a tough problem ,but I really want to know the way to solve this kind of problem 😅
@sbusisoquintin8004
@sbusisoquintin8004 3 жыл бұрын
Not yet we are waiting for them😅💯 Support from South Africa🇿🇦
@shaurya1616
@shaurya1616 3 жыл бұрын
I think his immense knowledge comes from the pokeball.
@yensteel
@yensteel 3 жыл бұрын
Agreed
@mama5402
@mama5402 3 жыл бұрын
I guess that's why he looks like a pokemon xd...
@arjunsahu2543
@arjunsahu2543 3 жыл бұрын
😂🤣🤣
@williamsmamanimamani846
@williamsmamanimamani846 3 жыл бұрын
Estoy totalmente de acuerdo, mi estimado
@xxmysticexpertxx113
@xxmysticexpertxx113 3 жыл бұрын
Pikachu tellin him the answers
@justacityboy4426
@justacityboy4426 3 жыл бұрын
Math is basically magic, but without all the magic
@Exahax101
@Exahax101 3 жыл бұрын
It's logic not magic!
@SofronPolitis
@SofronPolitis 3 жыл бұрын
That's why it's called mathemagics
@Felixrizzlord
@Felixrizzlord 3 жыл бұрын
@@Exahax101 yes
@E12345E
@E12345E 3 жыл бұрын
Given: Math is basically magic, but without all the magic Prove: Magic doesn’t exist math = magic Given math - magic = magic Given magic - magic = magic substitution POE 0 = magic Simplify this proves that magic does not exist
@johnbiluke8406
@johnbiluke8406 3 жыл бұрын
@@E12345E (YEAH, YOU IN THE CROWD, CAN YOU SPOT THE MISTAKE?)
@markdougherty8203
@markdougherty8203 3 жыл бұрын
Method 3 is just completing the square from the other side. By symmetry it works the same. It's a cool trick though, because most people don't expect it. I have surprised people with it before. Obviously it's more convenient if the units term is a perfect square.
@SyberMath
@SyberMath 3 жыл бұрын
You have a way with Complex Numbers! Nice work!!! 🤩
@blackpenredpen
@blackpenredpen 3 жыл бұрын
Thanks! 😃
@SyberMath
@SyberMath 3 жыл бұрын
@@blackpenredpen My pleasure! 😊
@vivekbhutada3049
@vivekbhutada3049 3 жыл бұрын
Hey syber! Big fan here!!
@erikmensinga
@erikmensinga 3 жыл бұрын
@marine dtadtfeld bruh no why
@AliKhanMaths
@AliKhanMaths 3 жыл бұрын
I love the second way the most - looks so clean! You've really inspired me to share my maths tricks too!
@idrisShiningTimes
@idrisShiningTimes 3 жыл бұрын
I loved the first method honestly, since I'm basically used to solving fractions, and it gives out the answer in simplest form most of the time.
@shuvo1562
@shuvo1562 3 жыл бұрын
Type 3 seems new to me!Every time I learn something new from your videos.
@beaming_sparkling_trash261
@beaming_sparkling_trash261 3 жыл бұрын
I'm in love w the third method
@Firefly256
@Firefly256 3 жыл бұрын
Irrational Denominator to rational = rationalize Imaginary denominator to real = realize
@blackpenredpen
@blackpenredpen 3 жыл бұрын
Try this cubic x^3-3x^2-3x-1=0 Hint: it's kinda similar to the 3rd way in this video. Solution: kzbin.info/www/bejne/gKuQi2Ogm9hljJY
@crispyclips6268
@crispyclips6268 3 жыл бұрын
Bro can you please post some videos on calculus (majorly integral calculus) and functional equations too As I am preparing for jee advanced and the questions need practice for developing that approach. How to contact you ?
@crispyclips6268
@crispyclips6268 3 жыл бұрын
And more questions like this one kzbin.info/www/bejne/aandk2B_pr53fM0
@4ltrz555
@4ltrz555 3 жыл бұрын
@@crispyclips6268 he has made a lot of integration speedruns and long runs. You can check it out in his playlists
@crispyclips6268
@crispyclips6268 3 жыл бұрын
OK thanks
@RazorM97
@RazorM97 3 жыл бұрын
At 5:45 i thought you were going to say, "let's delete that two and it will work out nicely". Man I was so wrong XD
@blackpenredpen
@blackpenredpen 3 жыл бұрын
Do you have a different way to complete the square for this equation?
@ryancantpvp
@ryancantpvp 3 жыл бұрын
No because the video is still premiering lol!
@purushothaman6698
@purushothaman6698 3 жыл бұрын
No
@mathevengers1131
@mathevengers1131 3 жыл бұрын
Fourth method: Use quadratic formula Fifth way: Tell πkachu to use thunderbolt
@beastgamer4932
@beastgamer4932 3 жыл бұрын
how do you use quadratic formula to complete the square
@davidbrisbane7206
@davidbrisbane7206 3 жыл бұрын
We can set x = 1/y, as x = 0 is not a solution. So, 2x² + 6x + 9 = 0 is transformed into 9y² + 6y + 2 = 0 So, 36y² + 24y + 8 = 0 So, (6y + 2)² = -4 So, 6y + 2 = ±2i So, 3y = -1 ± i So, y = (-1 ± i)/3 So, x = 3/(-1 ± i) So x = (-3 ± 3i)/2
@MathAdam
@MathAdam 3 жыл бұрын
Next video: 3 Ways to Complete the Pikachu
@anshumanagrawal346
@anshumanagrawal346 3 жыл бұрын
Yeesss
@paulg444
@paulg444 3 жыл бұрын
This guy is the man!!!.. Love his energy!
@prepa-maths
@prepa-maths 3 жыл бұрын
Hello from France !!! Excellent channel !!
@tambuwalmathsclass
@tambuwalmathsclass 3 жыл бұрын
I must try this in with my students
@juancarlosquispemamani7238
@juancarlosquispemamani7238 3 жыл бұрын
Genial!!! yo soy de Bolivia voy en la carrera de Ingeniería y voy aprendiendo mucho de ti... muchas gracias por compartir tus conocimientos!!!! sigue adelante!!! exitos!!!
@SandeepKumar-dw3sj
@SandeepKumar-dw3sj 3 жыл бұрын
Wow you have legend way to solve it
@patrickpablo217
@patrickpablo217 3 жыл бұрын
Nice! All three were great :) I'll add another twist that can fit with any of the three. Recently I switched from "completing the square" to "completing the difference of squares" and I like it a lot more. I'll give a basic example: x^2+6x+8=0 proceed as usual but *don't* move anything to the RHS: x^2 + 6x + 3^2 + -(3)^2 + 8 = 0 (x + 3)^2 - ( 3^2 - 8 ) = 0 that second term isn't a square yet but we can write it as one easily: (x + 3)^2 - (√[ 3^2 - 8 ])^2 = 0 Now we have a difference of squares, but let's simplify first: (x + 3)^2 - (√[ 9 - 8 ])^2 = 0 (x + 3)^2 - (√[ 1 ])^2 = 0 (x + 3)^2 - (1)^2 = 0 now difference of squares takes care of the ± automatically and gives (x+3+1)*(x+3-1)=0 (x+4)*(x+2)=0 so x={2,4} I really like this method since you never have to deal with moving things from LHS to RHS or back, and it's more like factoring, and it avoids the ± issue completely. It also has direct relation to the parabola associated with the quadratic: the first of the squares gives the line of symmetry (the x-coordinate of the vertex), and the second one provides the distance to the solutions and the y-coordinate of the vertex. And it saves steps, which is nice.
@patrickpablo217
@patrickpablo217 3 жыл бұрын
for this equation 2*x^2 + 6x + 9=0: (doing more arithmetic than necessary, just to not get people lost) 2*x^2+6x+(3/√2)^2 -(3/√2)^2 + 9 =0 (√2*x+(3/√2))^2 - ((3/√2)^2 - 9) = 0 (√2*x+(3/√2))^2 - (9/2 - 9) = 0 (√2*x+(3/√2))^2 - (-9/2) = 0 (√2*x+(3/√2))^2 - (i*3/√2)^2 = 0 [so here next is where we use difference of squares (x^2 - y^2) = (x+y)*(x-y)] ( √2*x+(3/√2) + i*3/√2 ) * ( √2*x+(3/√2) - i*3/√2 ) = 0 [group the constant terms:] (√2*x + (3+i*3)/√2)*(√2*x + (3-i*3)/√2)=0 [you could be done here if you know that if (mx+n)=0 then x must equal -n/m, but if not, pull out a √2 from each factor:] √2*(x+(3+i*3)/2) * √2*(x+(3-i*3)/2)=0 [combine them:] 2*(x+(3+i*3)/2)*(x+(3-i*3)/2)=0 Then we just read off the solutions as normal: x={ -3/2 -(3/2)*i, -3/2+(3/2)*i } which are the same as in the video
@Raizensen9415
@Raizensen9415 3 жыл бұрын
Best book for all basic concept for algebra
@anandk9220
@anandk9220 3 жыл бұрын
Third method is the best of all time !!! 😘😘😘😘😘😘😘😘😘😘
@Songfugel
@Songfugel 3 жыл бұрын
2nd one felt most comfortable, since it was close to the normal way to solve it
@danieleferrara561
@danieleferrara561 3 жыл бұрын
Last one is the most interesting, thank you
@nychan2939
@nychan2939 3 жыл бұрын
I love the completing square method since I was a child.
@jgrigg1720
@jgrigg1720 3 жыл бұрын
I honestly love the third way.
@user-my7ki4it3s
@user-my7ki4it3s 2 жыл бұрын
First one. But the other two ways were a completely new for me, thanks 😅
@sakib5766
@sakib5766 3 жыл бұрын
3rd method: when u r too crazy for a perfect square
@krishanu-d1k
@krishanu-d1k 2 жыл бұрын
First and second is best!!
@sueyibaslanli3519
@sueyibaslanli3519 3 жыл бұрын
Exactly, the third one
@mathstutors9179
@mathstutors9179 3 жыл бұрын
7:35 What is the difference between “+or-“ and “-or+”
@Crash-yp7ll
@Crash-yp7ll 3 жыл бұрын
If you have two or more of 'these' in eq, always use the top signs together or the bottom two signs together, but never the top and bottom of each together ...
@stephenbeck7222
@stephenbeck7222 3 жыл бұрын
No difference if you only have one of them in the equation. Sometimes we write, for example, the formulas for sum and difference for cosines with a +- on one side and a -+ on the other side to indicate when one side is adding then the other side is subtracting and vice versa.
@Crash-yp7ll
@Crash-yp7ll 3 жыл бұрын
Agree ... - '/ ' always confusing - Doesn't totally mean '+ or -' but maybe better as '+ and -, one at a time, and in that order' ...
@johnbiluke8406
@johnbiluke8406 3 жыл бұрын
I like the Gatorade bottles in the background.
@reda4495
@reda4495 3 жыл бұрын
Blackpenredpen >>>> any other math's teacher
@durgeshverma8131
@durgeshverma8131 3 жыл бұрын
Hey bro superior literally quite shocked to see the way you solved I'm in 11th and just now studies complex number with quadratic equations.😃😄😄 LOVE from India
@simdriver6797
@simdriver6797 3 жыл бұрын
Mind blowing in t-3, t-2, t-1... now!
@aamirakhtar5913
@aamirakhtar5913 3 жыл бұрын
We love your explanation 💘😻💜💛💚🧡 . Can you please tell us how you explain. When ever I try to explain any maths problem literally no one got it. You are awesome 👌
@in-ty8vb
@in-ty8vb 3 жыл бұрын
I bet your explanation is good,they just don't know math
@electrocode4095
@electrocode4095 3 жыл бұрын
There is one another method (How you can forget Shri Dharacharya's Formula 🤨) ax² + bx + c = 0 you can write x =( - b ⨦ √ (b² - 4*a*c) )/(2*a)
@flash.the.dash765
@flash.the.dash765 3 жыл бұрын
Also known as the quadratic formula
@flash.the.dash765
@flash.the.dash765 3 жыл бұрын
Apparently there are 3 ways
@AliKhanMaths
@AliKhanMaths 3 жыл бұрын
Well-remembered! But that's just a derivation of the conventional completing the square method, so I don't think it would count as another method of completing the square.
@electrocode4095
@electrocode4095 3 жыл бұрын
@Python Project Academy It can be able to make square just do some math for it i.e. after rearranging of variables and constant it would be (x+ b/2a)² = (b² - 4*a*c )/4*a²
@jimbobago
@jimbobago 3 жыл бұрын
This formula is simply the generic result from using completing the square on ax^2 + bx + c = 0.
@skyjumper4097
@skyjumper4097 Ай бұрын
1:00 where do the 3x go?
@nitish2799
@nitish2799 3 жыл бұрын
1:31 How can a square of any no be -ve?
@siralanturing9103
@siralanturing9103 3 жыл бұрын
the cheeky smile when black pen says +/- but red pen says -/+
@alpcanakaydn6986
@alpcanakaydn6986 3 жыл бұрын
additional soluiton: if we multiply each side by 2 it becomes 4x²+12x+18=0 if we complete the perfect square it becomes (2x+3)²+9=0
@Leeanne750
@Leeanne750 3 жыл бұрын
Multiplying by "4a" is safe. (In this case, 8). It will work all the time, not only in this example. ax^2 + bx +c =0 4a^2x^2 + 4abx = -4ac (2ax + b)^2 = -4ac - b^2 .........
@alpcanakaydn6986
@alpcanakaydn6986 3 жыл бұрын
@@Leeanne750 It works just fine,but my goal is to find other solutions in the question
@angelofelisimolacruz1462
@angelofelisimolacruz1462 3 жыл бұрын
@@Leeanne750 Thanks for this approach.
@muhammadnaufalzaky1326
@muhammadnaufalzaky1326 3 жыл бұрын
Please, upload a video about the del operator, that thing in the vector calculus
@carultch
@carultch 3 жыл бұрын
The del operator is a vector of partial differential operators. When applied to the next function, it is applied in a way that is analogous to either scalar multiplication, dot products, or cross products. Apply del to scalar field f(x,y,z), analogous to scalar multiplication, and we get the gradient of the scalar field. The gradient is a vector field of partial derivatives of the scalar field, which indicates the direction and magnitude of steepest ascent. del f(x,y,z) = Apply del dot to a vector field F(x,y,z), analogous to the dot product, and we get what we call the divergence. This is a measure of sources and sinks in a vector field. An application of this, is Gauss's law. del dot F = dF/dx + dF/dy + dF/dz Apply del cross to a vector field F(x,y,z), analogous to a cross product, and we get what we call curl. This is a measure of the rotationality of a vector field, and a vector field with a curl of zero is called a conservative vector field. A conservative vector field is the gradient of a scalar function. The curl of a vector field is itself a vector field, that will be perpendicular at every point. It indicates that line integrals around closed loops of a vector field are non-zero. An application of curl is Faraday's law of induction and Ampere/Maxwell's law of current and magnetic fields.
@MonzurulHoque3141
@MonzurulHoque3141 3 жыл бұрын
& That's why I love Mathematics😍😍🤷😁😊😊
@migssir
@migssir 3 жыл бұрын
Your 3rd solution is cool.
@СвободныйУголок
@СвободныйУголок 3 жыл бұрын
5:10 incredible methods, but one thing I did not understand, why multiply by 8 in the 2nd method? can be multiplied by 2 and get the same result without huge calculations 2(2х^2+6х+9)=0 4х^2+12x+()^2=-18+()^2 12=2*2*3 (2x+3)^2=-18+9 2x+3=+-r(-9) x=(-3+-3i)/2
@dog.3162
@dog.3162 2 жыл бұрын
so it works consistently probably
@mathysicssaransh7939
@mathysicssaransh7939 3 жыл бұрын
Can u make a video explaining the graphical meaning of integration by substitution...more specifically .. integration by trigonometric substitution..?
@carultch
@carultch 3 жыл бұрын
It means that you can recognize the integrand, as part of a term made from the Pythagorean theorem, in order to re-write a complicated term as a trig function that you can integrate. For instance: integral of dx/sqrt(1 - x^2) Draw a right triangle with (1-x^2) as one of its legs The remaining side will be x and the hypotenuse will be 1 This enables you to define an angle on this triangle, in order for 1/sqrt(1-x^2) to be a trigonometric ratio of the angle you define.
@bhgtree
@bhgtree 3 жыл бұрын
"don't like fractions......when they see fractions 90% of them freak out." And thats only the teachers :)
@kokichioma1408
@kokichioma1408 3 жыл бұрын
I'm new subscriber here.
@dr.rahulgupta7573
@dr.rahulgupta7573 2 жыл бұрын
Sir (( d/dx) LHS )^2 = D , where D is discriminant of L HS function . This gives the answer immediately. i.e. (4x+6)^2 = -- 36 or 4x+6 = +6i or 4x +6 = --6i .
@mokouf3
@mokouf3 3 жыл бұрын
3rd way is cleanest.
@EynkiYoom
@EynkiYoom 3 жыл бұрын
Damn. Nice!!!!
@glennn.micarandayo8657
@glennn.micarandayo8657 3 жыл бұрын
Just curious of the formula table on the background
@daiyousei.1586
@daiyousei.1586 3 жыл бұрын
This is so efficient holy sht Method 2 is my fav
@ericthecuberspeedcuber
@ericthecuberspeedcuber 3 жыл бұрын
5:46 "Wouldn't it be nice"
@denilsoncosta31415
@denilsoncosta31415 3 жыл бұрын
Suggest 4th method to replace x by y-b/2a which is also cool.
@qureshisiddig9274
@qureshisiddig9274 3 жыл бұрын
How amazing is that you keep superise me wow
@sanadsingh7104
@sanadsingh7104 3 жыл бұрын
Sir, can you tell me how to find the length of curve of sin x from 0 to pi
@3r3nite98
@3r3nite98 3 жыл бұрын
This is very cool.
@noreldenzenky1527
@noreldenzenky1527 3 жыл бұрын
perfect
@zerilioner639
@zerilioner639 3 жыл бұрын
Hello, I have one math question:Find the equation of the tangent to the curve y =cos^2⁡ x when x=π/3 . Your solution should use radian measure. I kind of figured out m=-√3/2and y=1/4. Is the equation how to solve? Is it 1/4=√3/2(x-π/3)+y? Can you explain this question?
@FaerieDragonZook
@FaerieDragonZook 3 жыл бұрын
Since there is a constant term, x=0 is not a solution. Thus, you can divide both sides by x^2. Then make the substitution y = 1/x, and do complete the squares in y. This makes the third way look like the first
@nory2441
@nory2441 3 жыл бұрын
Hey bprp love from India nice videos can you plz make 100 limits in 1 take plz I commented before but u din't see
@willbishop1355
@willbishop1355 3 жыл бұрын
I do really like the 3rd way, although as you said it won't always work.
@PeetaN
@PeetaN 3 жыл бұрын
I prefer the first that we can use everytime :)
@GDPlainA
@GDPlainA 3 жыл бұрын
7:21 I cant unsee that -+ looking like a villager
@prashanthkumar0
@prashanthkumar0 3 жыл бұрын
all the methods were good but i still like quadratic formula :P
@helloitsme3958
@helloitsme3958 3 жыл бұрын
hey bro i need help 1/a+a=b find 1/a^n+a^n in term b thanks
@ouidadelbojaddaini1432
@ouidadelbojaddaini1432 3 жыл бұрын
How can we thank you?
@professoraxolotl8960
@professoraxolotl8960 3 жыл бұрын
3:58 I'm a math teacher and the same thing happens to me quite a lot, I want to ask for something but I say the answer hahaha
@eliasmazhukin2009
@eliasmazhukin2009 3 жыл бұрын
In fact, way #2 is the way people were doing it in India in the 11th century!
@johndanielvillanueva8604
@johndanielvillanueva8604 3 жыл бұрын
Awesome
@GDPlainA
@GDPlainA 3 жыл бұрын
the 2nd way is basically going from the quadratic formula to the base form
@StephanvanIngen
@StephanvanIngen 3 жыл бұрын
Beautiful
@BlessingIduh
@BlessingIduh 2 жыл бұрын
I prefer the third way
@omograbi
@omograbi 3 жыл бұрын
There was a forth way you mentioned in other vids where you reduced the equation in a table and then multiplied the contents of the table.
@robertveith6383
@robertveith6383 Жыл бұрын
*@ blackpenredpen* -- Treat the constant 3 as the variable from the start: 9 + 6x + 2x^2 = 0 ---> (3)^2 + 2x(3) + ______ = -2x^2 + ______ ---> (3)^2 + 2x(3) + x^2 = -2x^2 + x^2 ---> (3 + x)^2 = -x^2. Then, proceed as you did with the rest of Method 3.
@particleonazock2246
@particleonazock2246 3 жыл бұрын
Just if you didn't know: bprp drilled a square peg in the round hole of his Pokeball. This enabled him to complete the square, in his niche field of mathematics.
@DownDance
@DownDance 3 жыл бұрын
I like that you say with multiply everybody... Like these are humans
@thengodpbot7892
@thengodpbot7892 3 жыл бұрын
can you do IMO 2021
@arcader30
@arcader30 3 жыл бұрын
4th way, use QUADRATIC FORMULA!! 😁😁
@jimbobago
@jimbobago 3 жыл бұрын
But the only reason the quadratic formula exists is ... completing the square ... which is the point of the video.
@blandon93
@blandon93 3 жыл бұрын
Is there a way where one of x is equal to i or -i? I calculated one imaginary root which is close to -i (like -0,98i), I wonder if we ever can achieve whole i number.
@flash.the.dash765
@flash.the.dash765 3 жыл бұрын
The letter 'i'is basically an imaginary number since its not possible to solve the negative root. However if you write it as '-i' it'll simply cancels the negatives of root and the letter i and results in positive root
@MohammadIbrahim-sq1xn
@MohammadIbrahim-sq1xn 2 жыл бұрын
=(x+i)(x+k) =x²+x(i+k)+ ik
@arshadalam
@arshadalam 3 жыл бұрын
Simply use quadratic formula
@marbangens
@marbangens 3 жыл бұрын
the 3rd way, because 1+1 is fun :)
@matejcataric2259
@matejcataric2259 3 жыл бұрын
I love math4fun and I love bprp and I love math
@aryangupta7092
@aryangupta7092 3 жыл бұрын
Can u find the remainder when 17^(63) is divided by 1000
@aashsyed1277
@aashsyed1277 3 жыл бұрын
Cool video! Thanks so much for these joyful moments ❤️nice work!
@egorsuzopov2419
@egorsuzopov2419 3 жыл бұрын
Good day. Here in Russia we solve that equations in school way with Discriminant, which is: D = b^2 - 4ac. And the x1 & x2 = (- b ± i*√D)/2a. Much faster!
@chitramc7238
@chitramc7238 3 жыл бұрын
Same
@robertveith6383
@robertveith6383 Жыл бұрын
Write 2a inside of parentheses when it is in the denominator.
@thengodpbot7892
@thengodpbot7892 3 жыл бұрын
Do you know general way to complete cube equation
@XAHMED5A
@XAHMED5A 3 жыл бұрын
prove that from L.H.S (secA.secB.cscA.cscB)/(cscA.cscB - secA.secB) = sec(A+B)
@pribato
@pribato 3 жыл бұрын
Are you from Singapore?
@aweebthatlovesmath4220
@aweebthatlovesmath4220 2 жыл бұрын
China
@rikthecuber
@rikthecuber 3 жыл бұрын
DO SOME DIFFERENTIAL EQNS BPRP!
@blackpenredpen
@blackpenredpen 3 жыл бұрын
What's a differential equation? jk, here's the diff eq marathon: kzbin.info/www/bejne/m17Ghaydg8d4i6c
@durgeshverma8131
@durgeshverma8131 3 жыл бұрын
He means to use calculus method.
@klausbuda7922
@klausbuda7922 3 жыл бұрын
I would use the quadratic equation to solve it
@jimbobago
@jimbobago 3 жыл бұрын
But you need completing the square to develop the quadratic formula in the first place.
@GreenMeansGOF
@GreenMeansGOF 3 жыл бұрын
I disagree with method 3. Square root of x^2 is the absolute value when x is real. However, x is not necessarily real and is actually complex and non-real. I do not think sqrt(x^2)=+/-x is valid. I could be wrong, however. And yes, I acknowledge that you arrive at the correct answer but that does not mean that the method is valid.
@MathNerd1729
@MathNerd1729 3 жыл бұрын
Well, the square roots of -x² could be ix or -ix. The principal root could be either one of these, yet because of the ±, both possibilities are covered! :)
@simplevc2980
@simplevc2980 3 жыл бұрын
First way
@DudsO_o
@DudsO_o 3 жыл бұрын
although hating fractions, I prefer the first one
@chocolateangel8743
@chocolateangel8743 3 жыл бұрын
If you hate fractions, you should check out the fraction series that Dr. James Tanton has on his channel. He's a mathematics educator and researcher that's big on teaching the mathematical logic and concepts behind things. He believes that the more a student understands, the less he or she has to memorize. He deals with fractions differently than most people.
@holyshit922
@holyshit922 3 жыл бұрын
For cubic equation ------------------------------------------ In book written in my native language in XVIII century there is following way Let's start from equation x^3+px+q=0 Move terms with x and constant to the other side x^3=-px-q Let's complete cube with free variable x^3+3x^2z+3xz^2+z^3=3x^2z+3xz^2+z^3-px-q (x+z)^3=(3xz+3z^2-p)x+z^3-q Now suppose that 3xz+3z^2-p=0 3z(x+z)=p x+z=p/(3z) p^3/(27z^3)=z^3-q z^6-qz^3-p^3/27=0 and we have quadratic in z^3 Interesting way for cubic which I saw on math forum uses sum of cubes identity x^3+px+q=A(x+m)^3+B(x+n)^3 Expand these cubes , compare coefficients and you will get system of equations to solve
@MathNerd1729
@MathNerd1729 3 жыл бұрын
I just found out how the last way generalizes! It's quite fun! :) Start with: ax² + bx + c = 0 (c ≠ 0) Move the ax² term: bx + c = -ax² Multiply by 4c: 4bcx + 4c² = -4acx² Add b²x² and factor: b²x² + 4bcx + 4c² = (b² - 4ac)x² (bx + 2c)² = (b² - 4ac)x² Take the square root: bx + 2c = ± √(b² - 4ac) x Solve for x and rationalize the denominator to get the usual Quadratic Formula! :) Footnote: Apologies to BPRP about my previous comment; I meant the last way and didn't know how to tell you I made a typo! Additional note: The formula we get before rationalizing the denominator is known as the citardauq formula (That's quadratic backwards!)
@karma_kun9833
@karma_kun9833 3 жыл бұрын
(Odd+Odd+Odd=Even)? Can we prove that's right or not?
@Amar-zw5md
@Amar-zw5md 3 жыл бұрын
IIT Advance aspirants be like : We had few more ways left to solve that :)
@crispyclips6268
@crispyclips6268 3 жыл бұрын
👍👍
@Atreyaa499
@Atreyaa499 3 жыл бұрын
By simple quadratic formula 🤣😂😂🤣🤣
@ruceblee969
@ruceblee969 3 жыл бұрын
I heard that pop 3:24. Maybe go see a chiropractor...
@arirooz6240
@arirooz6240 3 жыл бұрын
Oh the 🦒 is concentrated at class. It's so cute. This is a importand method about trinomious. TK
My First Harvard MIT Math Tournament Problem
7:58
blackpenredpen
Рет қаралды 334 М.
solving equations but they get increasingly more impossible?
11:25
blackpenredpen
Рет қаралды 563 М.
UFC 310 : Рахмонов VS Мачадо Гэрри
05:00
Setanta Sports UFC
Рет қаралды 1,2 МЛН
When you have a very capricious child 😂😘👍
00:16
Like Asiya
Рет қаралды 15 МЛН
Правильный подход к детям
00:18
Beatrise
Рет қаралды 11 МЛН
Why do we "complete the square"?
9:50
MindYourDecisions
Рет қаралды 1,2 МЛН
4 popular ways to factor trinomials ax^2+bx+c (including slide & divide)
16:43
Can we NOT solve x^4+64=0 like this?
10:55
bprp math basics
Рет қаралды 68 М.
solving equations but they get increasingly awesome
10:44
blackpenredpen
Рет қаралды 1,1 МЛН
You probably haven't solved a quartic equation like this before!
12:59
You use the quadratic formula all the time, but where did it come from?
8:38
7 factorials you probably didn't know
12:59
blackpenredpen
Рет қаралды 405 М.
TikTok is a bad math goldmine! Solving x+2=x-2. Reddit r/sciencememes
4:21
if x+y=8, find the max of x^y (Lambert W function)
12:59
blackpenredpen
Рет қаралды 761 М.
life changing quadratic formula
10:46
Dr Peyam
Рет қаралды 1,5 МЛН
UFC 310 : Рахмонов VS Мачадо Гэрри
05:00
Setanta Sports UFC
Рет қаралды 1,2 МЛН