Let's talk about the area of a triangle when we know its sides! Heron's formula (example and proof) kzbin.info/www/bejne/a6vYhmOLnraCnJY
@yurenchu7 сағат бұрын
The formula for the area of a triangle is A = ½*(b)*h where b is the length of the base, and h is the height of the triangle. It can readily be seen that in this right triangle, b = 12 and h = 5 and hence A = ½*(12)*5 = 30 However, we can calculate the triangle's area also differently, after drawing three line segments, from the incircle's center to each of the triangle's vertices, which divide the triangle into three smaller triangles. Let r be the radius of the incircle, each smaller triangle has then a height of r and a base that corresponds to one of the sides of the original large triangle. The total Area is then the sum of the areas of these three smaller triangles: A = ½*(12)*r + ½*(5)*r + ½*(13)*r = ½*(12+5+13)*r = ½*(30)*r = 15*r This of course must be equal to the afore-calculated area A = 30 : 15*r = 30 ==> r = 2 So the area of the incircle is πr² = π*(2)² = 4π .
@ToeKat922Сағат бұрын
yeah thats what i would do
@wyattstevens85742 күн бұрын
With Heron's formula, you can even figure out the excircle radii. Divide twice the area by a+b+c for the inradius, and by b+c-a, a-b+c, and a+b-c for the exradii of sides a, b, and c respectively.
@cyruschang19046 сағат бұрын
5 + 12 - 13 = 2r r = 2 Triangle area = 5(12)/2 = 30 Circle area = (2)(2)π = 4π
@emmeeemm3 сағат бұрын
This is the first time I've ever found Heron's Formula useful. Thanks for this!
@ratandmonkey298210 сағат бұрын
I love this new series you're doing
@aComedicPianist3 күн бұрын
4:08 Couldn’t you multiply the right side by sin(C) to generalize it to any triangle as well?
@aComedicPianist3 күн бұрын
Assuming you had only the side lengths a and b and the angle C, you could use the law of cosines at the bottom replacing the side length c as well. Heron’s formula would probably be nicer if you had a nice number for the semiperimeter.
@wyattstevens85742 күн бұрын
@@aComedicPianistIn the circumradius video, s= 9/2, so it's not too bad. In a 5-12-13 triangle it's 15.
@michaelstahl15152 сағат бұрын
Thanks for your video ! That was a small step I missed .
@paparmarКүн бұрын
@ 0:47, for a right triangle, an equivalent expression is r = (a+b-c)/2. In this case: r = (5+12-13)/2 = 2.
@MrPaulc22211 сағат бұрын
Normally, I would do (12*5)/2 = 30 Then split into three triangles of areas 6r + 6.5r + 2.5r 15r = 30. r = 2 Area is 4pi un^2. So seeing you introduce a much faster way is just great. Thank you.
@Mediterranean813 күн бұрын
r(a+b+c) = ab r = ab/a+b+c = 2 So Area = 4π
@jackychanmaths9 сағат бұрын
The formula should be simplified to sqrt((s-a)(s-b)(s-c)/s)
@zawatsky7 сағат бұрын
Подбором равные касательные, двигаясь по часовой стрелке от нижней левой: 10, 10, 3, 3, 2, 2. Последние две перпендикулярные касательные равны радиусу. Ответ: r=2.
@lasalleman67924 сағат бұрын
First find area of triangle. A = 1/2 b * h. Area here is : 30. Second , find radius. Use incircle formula: Radius = area of triangle/semi-perimeter. r = 30/15. r = 2. Use formula for area of circle. Turns out area of circle is 12.57.
@呂永志-x7o9 сағат бұрын
也可以用c=a+b-2r求
@clasealfa20247 сағат бұрын
Creo que sale más rápido aplicando el teorema de Poncelet: 12+5=13+2r de aquí obtenemos r=2...😊😊😊
@Metaverse-d9f13 сағат бұрын
i think (5+12-13)/2 is THE shortcut
@colina6411 сағат бұрын
@holyshit92212 сағат бұрын
r- radius of incircle A - area of triangle p - perimeter of triangle r = 2A/p