How to handle imbalanced datasets in Python

  Рет қаралды 55,756

Data Professor

Data Professor

Күн бұрын

Пікірлер: 100
@DataProfessor
@DataProfessor 3 жыл бұрын
🌟Check out my second KZbin channel (Coding Professor) kzbin.info/door/JzlfIoF8nmWqJIv_iWQVRw 🌟 Download Kite for FREE www.kite.com/get-kite/?
@tahabihaouline2333
@tahabihaouline2333 3 жыл бұрын
nice video, i just want to know, how can i train this to get training data and testing data. an example will be really good
@matriks_yang_bikin_bingung
@matriks_yang_bikin_bingung 2 жыл бұрын
Hallo prof, how to handle imbalance dataset in multilabel classification data text?
@matriks_yang_bikin_bingung
@matriks_yang_bikin_bingung 2 жыл бұрын
Hallo prof, how to handle imbalance dataset in multilabel classification data text?
@alexioannides3305
@alexioannides3305 3 жыл бұрын
It would have been nice to demonstrate the impact these resampling methods have on the test metrics of some benchmark model (especially one that can use class weights in the loss function). In my experience, resampling can sometimes make a model perform worse and it can be better to use models with class-weighted loss functions.
@caioglech
@caioglech 3 жыл бұрын
Great example. Perhaps you could make another video showing the oversampling on training data. Lots of people (myself included) start doing the oversampling on the whole dataset, which leads to data leakage... which is a mistake.
@naveenkumarmangal9653
@naveenkumarmangal9653 3 жыл бұрын
Thanks very much for this comment.
@xin2668
@xin2668 2 жыл бұрын
Really helpful comment, thank you
@michellpayano5051
@michellpayano5051 3 жыл бұрын
This is a clear and simple guide to get started, thanks for sharing! About your last question, I am curious what would be your answer, which approach do you prefer from your experience?
@DataProfessor
@DataProfessor 3 жыл бұрын
Hi, I prefer undersampling
@michellpayano5051
@michellpayano5051 3 жыл бұрын
@@DataProfessor Could you please tell some reasons why?
@DataProfessor
@DataProfessor 3 жыл бұрын
@@michellpayano5051 I prefer to use actual data and thus undersampling. Oversampling introduces artificial data upon balancing.
@michellpayano5051
@michellpayano5051 3 жыл бұрын
@@DataProfessorI understand , thank you!!
@TinaHuang1
@TinaHuang1 3 жыл бұрын
Ooo awesome tutorial! Love how clear it is
@DataProfessor
@DataProfessor 3 жыл бұрын
Thank you! Cheers!
@eduardodimperio
@eduardodimperio 3 жыл бұрын
Why do undersampling instead slice the dataset do take the same amount of results?
@aashishmalhotra
@aashishmalhotra 2 жыл бұрын
Can u explain how does logistics regression behave with imbalanced dataset
@thinamG
@thinamG 3 жыл бұрын
It's helpful for me and many more. Great tutorial, Chanin. Thank you so much for sharing with us.
@DataProfessor
@DataProfessor 3 жыл бұрын
Happy to hear that! Thanks Thinam!
@rattaponinsawangwong5482
@rattaponinsawangwong5482 3 жыл бұрын
Oh, I seem to be the first guy here. As a rookie DS, I have to deal with the imbalanced dataset, too. My curiosity is we should perform undersampling or oversampling within the pipeline of cross-validation (say, K-fold cv) or should we do it before cross validation?
@DataProfessor
@DataProfessor 3 жыл бұрын
Hi, You can apply this prior to CV.
@sericthueksuban9151
@sericthueksuban9151 3 жыл бұрын
I've been following your channel since the collab with Ken Jee without realizing your name. Now you're inspiring me to pursue Data science even more! Thank you krub Ajarn Chanin! 🙏😂
@samuelbaba5406
@samuelbaba5406 3 жыл бұрын
Very great job professor ! Thank you so much for this clear video . By the way , do you think that after applying oversampling for example and after training a model (like XGBoost ) on the data , it would be interesting to use the Matthews Correlation Coefficient as a KPI to measure the efficiency of the model ? Or do you think it is not necessary? Thank you 🙏🏽
@DataProfessor
@DataProfessor 3 жыл бұрын
Yes, definitely, MCC is a great way to measure the performance of classification models, the plus side is that it is also more resistant to imbalanced data than that of accuracy.
@Ibraheem_ElAnsari
@Ibraheem_ElAnsari 3 жыл бұрын
Great tutorial Prof ! I could see how someone would use this in a test dataset, does it have other usecases ? Thanks a lot !
@DataProfessor
@DataProfessor 3 жыл бұрын
Hi, thanks for watching Ibraheem. Actually, we could use it in the training set in order to obtain a balanced model.
@kvdsagar
@kvdsagar 3 жыл бұрын
Professor can you share your contact details
@amaransi4900
@amaransi4900 3 жыл бұрын
Thanks a lot. I am looking for your explain protein ligand interaction through AI.
@muhammaddanial4549
@muhammaddanial4549 3 жыл бұрын
Hey, @amar I am also working on Machine learning-based virtual screening almost completed ML Models for VS. If u have any publications on it i need some help thanks.
@amaransi4900
@amaransi4900 3 жыл бұрын
@@muhammaddanial4549 hi i am on the beginning
@Gopaliofficial......
@Gopaliofficial...... 7 күн бұрын
Thanks for the video... really appreciate
@gunjankumar2267
@gunjankumar2267 3 жыл бұрын
thanks for this quick guide to overcoming the imbalance issue. I like to know, before applying these oversampling or undersampling techniques.. do i need to like standardize my dataset, or I can go with the original form of the data set?
@akbaraliotakhanov1221
@akbaraliotakhanov1221 3 жыл бұрын
I cama here through Notification, thanks Professor. We will wait for new and interesting videos
@DataProfessor
@DataProfessor 3 жыл бұрын
Awesome, glad to hear and thanks for supporting the channel!
@sherifarafa90
@sherifarafa90 3 жыл бұрын
I want to thank you for the Bioinformatics Project from Scratch.. I managed to apply it on AChE and I am willing to apply it to other target. Thanks so much and waiting for other Models 😁
@DataProfessor
@DataProfessor 3 жыл бұрын
Fantastic! Glad to hear that.
@sherifarafa90
@sherifarafa90 3 жыл бұрын
@@DataProfessor Can you do a tutorial on how to implement Neural networks on drug discovery?
@muhammaddanial4549
@muhammaddanial4549 3 жыл бұрын
@sherif Arafa can I get the link of these scratches?
@muhammaddanial4549
@muhammaddanial4549 3 жыл бұрын
I am also working on AChe and BChe
@DataProfessor
@DataProfessor 3 жыл бұрын
@@muhammaddanial4549 Awesome, sure the link is here kzbin.info/aero/PLtqF5YXg7GLlQJUv9XJ3RWdd5VYGwBHrP
@sanam6866
@sanam6866 2 жыл бұрын
Should we calculate the molecular descriptors and then balance the data?
@Ghasforing2
@Ghasforing2 3 жыл бұрын
Great tutorial as usual. Thanks for sharing, Professor!
@DataProfessor
@DataProfessor 3 жыл бұрын
Glad you liked it!
@hubbiemid6209
@hubbiemid6209 3 жыл бұрын
in my data science course, we used the stratification parameter from train_test_split() from sklearn, how do they differ?
@DataProfessor
@DataProfessor 3 жыл бұрын
That's a great question! Thanks for bring it up. Stratification maintains the ratio of the classes such that they train/test splits have roughly the same ratio of the classes (it does nothing with the class imbalance). On the other hand, data balancing will either bring up or bring down the minority or majority class, respectively, in order to make both to be the same size.
@ifeanyiedward2789
@ifeanyiedward2789 Жыл бұрын
Thanks alot . very precise and easy to understand
@Мага123-о2о
@Мага123-о2о 3 жыл бұрын
Thanks for the lesson, professor! I'd like to ask one question if you don't mind. Should we always over/undersample to 1:1 ratio? I guess, in case the initial ratio of majority and minority classes is 99:1, it can cause some problems while modelling.
@DataProfessor
@DataProfessor 3 жыл бұрын
Hi, the practice of addressing data balancing for a wide range of scenarios is a topic for research and experimentation. It might be worthwhile to check out published paper on the topic for various use case. Please feel free to share what you find.
@Мага123-о2о
@Мага123-о2о 3 жыл бұрын
Thank you for your response! I will definitely research on this topic :D
@ahmedjamel421
@ahmedjamel421 Жыл бұрын
Great tutorial Sir, When you split the data into X and Y and performed the resampling method, how can you make a concatenation with each other later?
@ranahamed-h8s
@ranahamed-h8s 3 ай бұрын
Well, if my data are 3.000 and 17.000, what is better when using the ML models? After this, is there a possibility the data is still biased toward a specific target?
@allanmarzuki5534
@allanmarzuki5534 3 жыл бұрын
What the side effect if we use synthetic data when handling the imbalance for building the models? And what if we have a lot of data, should we use oversample or undersample? Thank you prof
@minicorefacility
@minicorefacility 3 жыл бұрын
Thank you so so much. This is something that I am looking for. I struggled with this step in R-language for many months. I understand that by randomly sampling the overweight samples to mix with the underweight samples, just one time and further do model developing -- would create a poor model. Thus, my question is 1. How many times should I randomly sample 2. Does the distribution of both overweight and underweight samples affect times that we have to sample? Could you please share your thoughts?
@mukeshkund4465
@mukeshkund4465 3 жыл бұрын
I think there are some scenarios where we can use this technique differently..Can you tell us the different scenarios where we can perform oversampling, undersampling or random sampling
@sebastiancastro4126
@sebastiancastro4126 3 жыл бұрын
I think that in this case oversampling would be the right approuch due to the low number of compounds. Is this correct?
@DataProfessor
@DataProfessor 3 жыл бұрын
Both are valid approaches, it is subjective, depending on the practitioner. Personally, I like to use undersampling.
@nikhilwagle8466
@nikhilwagle8466 2 жыл бұрын
@@DataProfessor undersampling should only be done when the when the data is in millions or thousands. orelse the accuracy will get reduced.
@caiyu538
@caiyu538 Жыл бұрын
I have a question. I have a lot of negative samples which means that the data are unlabeled. Their number is much bigger than labeled data. I must include them. In this situation, how to handle this kind of imbalance?
@tahabihaouline2333
@tahabihaouline2333 3 жыл бұрын
nice video, i just want to know, how can i train this to get training data and testing data
@DataProfessor
@DataProfessor 3 жыл бұрын
Hi, once the data is balanced, you can take the balanced data to perform data splitting to train and test data using the train_test_split function.
@aashishmalhotra
@aashishmalhotra 2 жыл бұрын
Awesome explained every line of code lot helpful for Novice in understanding ipynb
@budisantosa9892
@budisantosa9892 7 ай бұрын
do we not need to split the data into test and train before balancing?
@donrachelteo9451
@donrachelteo9451 3 жыл бұрын
Thanks Data Professor; may I also know if this method is applicable to imbalance datasets in text classification model? Thanks
@DataProfessor
@DataProfessor 3 жыл бұрын
Yes this is application to imbalanced classes for classification model.
@donrachelteo9451
@donrachelteo9451 3 жыл бұрын
@@DataProfessor thanks for your reply professor 👍🏻
@negusuworkugebrmichael3856
@negusuworkugebrmichael3856 10 ай бұрын
Thank you Prof. Very helpful
@joeyng7366
@joeyng7366 3 жыл бұрын
Hi professor, I am trying to do binary classification on advertising conversions using Markov Chain but I'm not sure how should I implement it. Do you have any suggestions on this?
@เท่กองสมบูรณ์
@เท่กองสมบูรณ์ 3 жыл бұрын
What step for fix imbalance Before splits data or after splits in train set only
@aryasarkar1692
@aryasarkar1692 3 жыл бұрын
Hi! I have a doubt should we prefer undersampling or oversampling
@DataProfessor
@DataProfessor 3 жыл бұрын
Hi, both are valid approaches and depends on the practitioner. Personally, I like to use undersampling.
@anandodayil6081
@anandodayil6081 Жыл бұрын
How to know if we should use oversampling or undersampling?
@robinsonflores6482
@robinsonflores6482 3 жыл бұрын
Great video. Thanks for sharing!!
@DataProfessor
@DataProfessor 3 жыл бұрын
It’s my pleasure, thank you 😊
@muhammaddanial4549
@muhammaddanial4549 3 жыл бұрын
Hello sir I calculate the descriptors of ligand it 10k, use recursive features elimination then SVM and KNN model but my accuracy is low 0.82 and 0.83 how can I improve the accuracy(low mean paper published om same enzyme having accuracy 0.88...I tried correlation and drop the negative columns but it's not working. Need your help please.
@DataProfessor
@DataProfessor 3 жыл бұрын
Hi, there's no sure path for achieving high model performance. Several factors come into play (descriptor type, feature selection approach, learning algorithm, parameter optimization, data splitting, etc.), which is a part of research. I would recommend to try out addressing the different factors mentioned previously. Hope this helps.
@kl8801
@kl8801 3 жыл бұрын
Thanks for the video but where is the notebook?
@DataProfessor
@DataProfessor 3 жыл бұрын
Thanks for the reminder, the link is now in the video description.
@farahilyana9964
@farahilyana9964 2 жыл бұрын
prof, thankyou for the nice video. But, i want to ask, how to show the balance data after had do SMOTE?
@kaustavdas6550
@kaustavdas6550 2 жыл бұрын
What do we do if there are more than 2 classes which are imbalanced?
@gamingdudes...7575
@gamingdudes...7575 2 жыл бұрын
hi, how should i save this in the form of csv file
@DataProfessor
@DataProfessor 2 жыл бұрын
You can use the to_csv function from pandas.
@gamingdudes...7575
@gamingdudes...7575 2 жыл бұрын
@@DataProfessor when i handle my dataset using under sampling my accuracy is decreasing by 20 percent what should i do so,
@karmanyakumar8295
@karmanyakumar8295 2 жыл бұрын
Data is missing. Link is not working for input
@jairovillamizar6588
@jairovillamizar6588 3 жыл бұрын
You are a great professor!! Thanks a lot
@DataProfessor
@DataProfessor 3 жыл бұрын
Thank you! 😃
@rafael_l0321
@rafael_l0321 3 жыл бұрын
Thank you for the explanation! What is your opinion on creating decoys, that is, artificial data derived from the least represented class, for balancing? Do you know if this functionality is available in some library?
@KhadejaAl-nashad
@KhadejaAl-nashad Жыл бұрын
how I appreciate a balance between more than two categories......example of diabetic retinopathy's classification is 5 categories and two balance
@cozyfootball
@cozyfootball Жыл бұрын
Helpful, thx
@hasankuluk685
@hasankuluk685 9 ай бұрын
There is a flaw, we should apply the methos on train set, not all data
@debatradas1597
@debatradas1597 3 жыл бұрын
Thank you so much
@DataProfessor
@DataProfessor 3 жыл бұрын
You're welcome!
@datasciencezj3303
@datasciencezj3303 3 жыл бұрын
It's not been talked about: why is imbalance an issue?
@DataProfessor
@DataProfessor 3 жыл бұрын
Yes, you're right. Here goes. Imagine we have a dataset consisting of 1000 samples. 800 belongs to class A and 200 belongs to class B. As class A has 4 times higher samples than class B, there is a high possibility that the model may be biased towards class A. To avoid such scenario, we can either perform undersampling where 800 is reduced to 200. Or we can perform oversampling where 200 is resampled to 800 samples. In both cases, the samples are balanced for both classes.
@datasciencezj3303
@datasciencezj3303 3 жыл бұрын
@@DataProfessor wil be "biased"? only if you use the accuracy as a measure.
@datasciencezj3303
@datasciencezj3303 3 жыл бұрын
use AUC to measure
@incentivee
@incentivee 13 күн бұрын
Code Not avb in github
@juanmiranda4054
@juanmiranda4054 2 жыл бұрын
Te amo señor extraño mi modelo despegó
@samdaniazad3043
@samdaniazad3043 2 жыл бұрын
Over sampling
@budisantosa9892
@budisantosa9892 7 ай бұрын
do we not need to split the data into test and train before balancing?
@budisantosa9892
@budisantosa9892 7 ай бұрын
up
Exploratory Data Analysis in Python using Mito
4:58
Data Professor
Рет қаралды 4,3 М.
Tutorial 45-Handling imbalanced Dataset  using python- Part 1
13:01
Гениальное изобретение из обычного стаканчика!
00:31
Лютая физика | Олимпиадная физика
Рет қаралды 4,8 МЛН
She made herself an ear of corn from his marmalade candies🌽🌽🌽
00:38
Valja & Maxim Family
Рет қаралды 18 МЛН
Cat mode and a glass of water #family #humor #fun
00:22
Kotiki_Z
Рет қаралды 42 МЛН
How to build machine learning models for imbalanced datasets
19:45
Data Professor
Рет қаралды 8 М.
Machine Learning Fundamentals: Cross Validation
6:05
StatQuest with Josh Starmer
Рет қаралды 1,1 МЛН