How to integrate ∫sin^4(x)cos^2(x)dx - even powers

  Рет қаралды 164,368

MasterWuMathematics

MasterWuMathematics

Күн бұрын

Пікірлер: 78
@rajendramisir3530
@rajendramisir3530 6 жыл бұрын
Thanks for sharing your technique to find the anti-derivative of this trigonometrical integral. A+Bcos(2x)+Ccos(4x)+Dcos(6x)+ ...
@home8506
@home8506 6 жыл бұрын
Thank you, I'm peruvian and in my language there's wasn't any video with this particular problem !! I'm so thankful teacher 😁
@annhak
@annhak Ай бұрын
I'm from the future and I can confirm too. Greetings from Mexico
@davidliu7125
@davidliu7125 8 жыл бұрын
well, I have to say that this is a very complicated way to solve this problem. when we get to the step: int{1/8*[(sin2x)^2-(sin2x)^2*cos2x]}dx, we should take out the 1/8 and calculate two inside terms separately.
@MasterWuMathematics
@MasterWuMathematics 8 жыл бұрын
+David Liu Yeah I know it takes quite a few steps to solve this problem. Your method is perfectly good also. As long as we can come to same answer, there's no right or wrong way.
@socraticmathtutor1869
@socraticmathtutor1869 2 жыл бұрын
Very useful video! Thank you.
@Chingach
@Chingach 3 жыл бұрын
Thanks for helping Ukrainian student
@MasterWuMathematics
@MasterWuMathematics 3 жыл бұрын
It's my pleasure
@gilma4328
@gilma4328 5 жыл бұрын
Good explanation! Thank you.
@edheani
@edheani 4 жыл бұрын
Thank you so much. Greetings from Mexico
@MasterWuMathematics
@MasterWuMathematics 3 жыл бұрын
You are welcome!
@emmanuelalbazi8560
@emmanuelalbazi8560 9 жыл бұрын
Great video.
@rafaellisboa8493
@rafaellisboa8493 3 жыл бұрын
thank you cupinxa
@vaibhavshekhar314
@vaibhavshekhar314 5 жыл бұрын
This is an awesome technique....but wallis formula is more helpful if you want any shortcut method..
@holyshit922
@holyshit922 Жыл бұрын
For mental calculation reduction is easier and faster Int(sin^4(x)cos^2(x),x) = Int(sin^4(x)(1-sin^2(x)),x)=Int(sin^4(x),x)-Int(sin^6(x),x) Int(sin^n(x),x)=Int(sin(x)*sin^(n-1)(x),x) Int(sin(x)*sin^(n-1)(x),x) = -cos(x)sin^(n-1)(x)-Int(-cos(x)(n-1)sin^(n-2)(x)cos(x),x) Int(sin^n(x),x) = -cos(x)sin^(n-1)(x) + (n-1)Int(sin^(n-2)(x)cos^2(x),x) Int(sin^n(x),x) = -cos(x)sin^(n-1)(x) + (n-1)Int(sin^(n-2)(x)(1-sin^2(x)),x) Int(sin^n(x),x) = -cos(x)sin^(n-1)(x) + (n-1)Int(sin^(n-2)(x),x) - (n-1)Int(sin^n(x),x) nInt(sin^n(x),x) = -cos(x)sin^(n-1)(x) + (n-1)Int(sin^(n-2)(x),x) Int(sin^n(x),x) = -1/n cos(x)sin^(n-1)(x)+(n-1)/n Int(sin^(n-2)(x),x) Int(sin^6(x),x) = -1/6cos(x)sin^5(x)+5/6(-1/4cos(x)sin^3(x)+3/4(-1/2cos(x)sin(x)+1/2x))+C_{1} Int(sin^6(x),x) = -1/6cos(x)sin^5(x) -5/24cos(x)sin^3(x)-5/16cos(x)sin(x)+5/16x+C_{1} Int(sin^4(x),x) = -1/4cos(x)sin^3(x)+3/4(-1/2cos(x)sin(x)+1/2x)+C_{2} Int(sin^4(x),x) = -1/4cos(x)sin^3(x)-3/8cos(x)sin(x)+3/8x+C_{2} Int(sin^4(x),x) - Int(sin^6(x),x) = 1/6cos(x)sin^5(x)-1/24cos(x)sin^3(x)-1/16cos(x)sin(x)+1/16x+C
@Ryangosling144p
@Ryangosling144p 9 ай бұрын
Bro gave his voice in oppenheimer ...
@yadarapunarsimlu5208
@yadarapunarsimlu5208 4 жыл бұрын
How u written -cos(2x) +1÷2 cos(2x) = - 1/2 cos (2x)
@eleftheriap.m.4701
@eleftheriap.m.4701 5 жыл бұрын
Very helpful thanks a lot!!
@1238MHUT
@1238MHUT 5 жыл бұрын
great explanation!
@AL-wc8oy
@AL-wc8oy 3 жыл бұрын
Thankyou so much
@MasterWuMathematics
@MasterWuMathematics 3 жыл бұрын
Most welcome 😊
@dianakyryna7637
@dianakyryna7637 5 жыл бұрын
Thank you very very much❤️❤️❤️
@AbhipsaPatra17
@AbhipsaPatra17 3 жыл бұрын
Thank you Sir ❤
@rajbawanna6265
@rajbawanna6265 7 жыл бұрын
Thank you very much for the help
@prasenjitmukherjee7210
@prasenjitmukherjee7210 5 жыл бұрын
Thank you sir.
@SamuelGauya
@SamuelGauya 7 ай бұрын
What if both sine and cosine are odd but not both
@alidesiner3935
@alidesiner3935 3 жыл бұрын
Thanks
@harisankarsharma2612
@harisankarsharma2612 3 жыл бұрын
But step marking Is false
@sonaliswapna....6095
@sonaliswapna....6095 5 жыл бұрын
thanks for this
@manishadevi5834
@manishadevi5834 6 жыл бұрын
Helpfull video
@leulassefa7708
@leulassefa7708 3 жыл бұрын
Super
@tharunivijjigiri5484
@tharunivijjigiri5484 3 жыл бұрын
How did u wrote - cos 2x+1/2cos2x=-1/2cos 2x
@biswajitbarman8270
@biswajitbarman8270 6 жыл бұрын
Thnx a lot bro
@portiagonzales2513
@portiagonzales2513 4 жыл бұрын
It should be 1/2 cos 6x
@bijaybera6469
@bijaybera6469 4 жыл бұрын
`int(sin4x)/(cos^(4)x)dx` What is the solution of this question
@MasterWuMathematics
@MasterWuMathematics 3 жыл бұрын
It took a while, but I've made a video for you here: kzbin.info/www/bejne/Z4vdg6dultp3mpY
@edgardoconcepcion8308
@edgardoconcepcion8308 5 жыл бұрын
the right formula for d product to sum formula s cos (u) cos (v) = 1/2[cos(u-v) - cos(u+v)] . correct me f i'm wrong. reply plz. thx
@MasterWuMathematics
@MasterWuMathematics 5 жыл бұрын
The left hand side of the formula you have stated should be sin(u)sin(v)
@sarahkamal2585
@sarahkamal2585 5 жыл бұрын
can I get the link for the video where u explained cos(u)cos(v)
@Furapika
@Furapika 5 жыл бұрын
Try to type this on math way its different
@tharunivijjigiri5484
@tharunivijjigiri5484 3 жыл бұрын
Did u take lcm
@tharunivijjigiri5484
@tharunivijjigiri5484 3 жыл бұрын
Of 1/2
@candrahman8774
@candrahman8774 3 жыл бұрын
hmmm, sir i am want to ask, what happen if the question is ∫cos^2(x)sin^4(x)dx, is the answer the same sir?
@MasterWuMathematics
@MasterWuMathematics 3 жыл бұрын
Yes, the answer will be exactly the same.
@ziaarfeen9992
@ziaarfeen9992 6 жыл бұрын
sir is there any video in which you tell half angle formulas please if you have then tell me. I did not want anyone to tell me that i sucks in math i already know. exams are coming i'm so worried
@MasterWuMathematics
@MasterWuMathematics 6 жыл бұрын
Have confidence in yourself my friend. Understand as much as you can and you'll be fine for your exams. I derive the half angle formulas in this video: kzbin.info/www/bejne/h4LEh5Kld8-GZ8U
@Furapika
@Furapika 5 жыл бұрын
Oof but the answer in my book is different from your answer sir. Im confused
@doworktomorrow
@doworktomorrow 4 жыл бұрын
mine is solved like this (1 − cos (2x)/2)^2 . (1 + cos (2x)/2) dx
@Rafaelmiramadi
@Rafaelmiramadi 4 жыл бұрын
This is also correct, But alot of books simplify alot further by using more trigonometry
@santoshmathapati3089
@santoshmathapati3089 6 жыл бұрын
Thanks Sir
@round2heaven792
@round2heaven792 6 жыл бұрын
greeaaaattt
@rohanjha9801
@rohanjha9801 7 жыл бұрын
Sir do u have any video for higher even powers of sin and cos if have suggeste me
@MuhammadIrfan-nf9pb
@MuhammadIrfan-nf9pb 6 жыл бұрын
yes you can resolve them in (sin^2)^n sinx (cos^2)^N
@PoonamGupta-uz7ct
@PoonamGupta-uz7ct 6 жыл бұрын
How -1/2cos 2x came
@shrutiyadav7706
@shrutiyadav7706 4 жыл бұрын
At 1:40 what are A, B, C and D If any know plz tell
@anamikayadav8416
@anamikayadav8416 7 жыл бұрын
What if the angle of sin and cos both are different rather than same angle x
@rajbawanna6265
@rajbawanna6265 7 жыл бұрын
Anamika Yadav that will be more easy than this
@tharunivijjigiri5484
@tharunivijjigiri5484 3 жыл бұрын
Hello masterwumathimatics plzzz clarify my doubt🙄🙄
@shakirahahmadsuhaimi3306
@shakirahahmadsuhaimi3306 6 жыл бұрын
Great video! Thank you so much. But can you make a video on how to solve this problem? "integrate sin^5(x)(cos(x))^1/4". I really don't have any ideas on even how to start. Thank you in advance. ^_^
@MasterWuMathematics
@MasterWuMathematics 6 жыл бұрын
Here you go... kzbin.info/www/bejne/nInCe35opr93iZI
@JavierReyesAb
@JavierReyesAb 6 жыл бұрын
Hi, I have that integrate with another result. Can you answer me to talk? Greetings from Mexico
@MasterWuMathematics
@MasterWuMathematics 6 жыл бұрын
Yes. What result do you have?
@JavierReyesAb
@JavierReyesAb 6 жыл бұрын
Sorry for the delay. My result is : x/16 - sin4x/64 - sen^3 2x/48 + c
@fiorelavargas8924
@fiorelavargas8924 4 жыл бұрын
@@JavierReyesAb me sale lo mismo
@tharunivijjigiri5484
@tharunivijjigiri5484 3 жыл бұрын
Hello
@glorytv1510
@glorytv1510 7 жыл бұрын
so Woooow
@clickityClank_
@clickityClank_ 7 жыл бұрын
At 3:27 you say sin(x)cos(x) = 1/2 sin(2x), where does the 1/2 come from? i though it was 2sin(x)cos(x) = sin(2x)
@victorcorcini8305
@victorcorcini8305 7 жыл бұрын
2sin(x)cos(x) = sin(2x) Multiplying both sides by 1/2 you find sin(x)cos(x) = 1/2 sin(2x)
@victorcorcini8305
@victorcorcini8305 7 жыл бұрын
2sin(x)cos(x) = sin(2x) dividing both sides by 2 you find sin(x)cos(x) = 1/2 sin(2x)
@victorcorcini8305
@victorcorcini8305 7 жыл бұрын
It's important to remember to multiply by 1/2 is the same that to divide by 2
@ABHISHEKKUMAR-02048
@ABHISHEKKUMAR-02048 6 жыл бұрын
This is a simple algebraic calculation : We know that sin(2x) = 2sin(x)cos(x) We can also write this trigonometrical formula as : 2sin(x)cos(x) = sin(2x) Which implies sin(x)cos(x) = (1/2)sin(2x) You should understand this result with : 2x = y implies x = y/2 or, x = (1/2)y
@nadiamedina957
@nadiamedina957 6 жыл бұрын
5:18 ?
@shakeelkalsoehffgy6efyhrry179
@shakeelkalsoehffgy6efyhrry179 3 жыл бұрын
simply opened brackets , lol late af reply
@sriabhijit
@sriabhijit 4 жыл бұрын
Very long Need shortcut.
@thegoldenstatus3691
@thegoldenstatus3691 4 жыл бұрын
Ooo
@tharunivijjigiri5484
@tharunivijjigiri5484 3 жыл бұрын
Plz reply
@thegoldenstatus3691
@thegoldenstatus3691 4 жыл бұрын
Hindi padha le na
@basantahota538
@basantahota538 6 жыл бұрын
Thanks sir
How to Integrate ∫sin^3(x)cos^4(x)dx
6:12
MasterWuMathematics
Рет қаралды 80 М.
Integrate x^-x dx
20:37
Prime Newtons
Рет қаралды 122 М.
Real Man relocate to Remote Controlled Car 👨🏻➡️🚙🕹️ #builderc
00:24
Car Bubble vs Lamborghini
00:33
Stokes Twins
Рет қаралды 43 МЛН
136. Integral of sine to the fourth of x (separating a square)
12:12
Integrating Even Powers of Sine and Cosine
10:25
turksvids
Рет қаралды 17 М.
Trig Integration with Only Even Powers
8:37
inTuition
Рет қаралды 6 М.
How to STUDY so FAST it feels like CHEATING
8:03
The Angry Explainer
Рет қаралды 1,6 МЛН
How to Expand x+1 Raised to an Irrational Power
11:10
Zundamon's Theorem
Рет қаралды 91 М.
Integration of sin^4(x)cos^2(x) dx
5:38
Academic Videos (Solved Examples)
Рет қаралды 38 М.
integral of sin(x)/x from 0 to inf by Feynman's Technique
22:44
blackpenredpen
Рет қаралды 1,2 МЛН
Integral of sin^4x
7:39
The Organic Chemistry Tutor
Рет қаралды 110 М.