💪 Support this channel and get my math notes by becoming a patron: www.patreon.com/blackpenredpen
@shrihari1546 жыл бұрын
Sir now Ill completely forget memorizing these formula Because from Now on I can derive these formula anytime , anywhere Long Live BlackPenRedPen Yeeay!!!
@blackpenredpen6 жыл бұрын
My pleasure!
@jaywyn25842 жыл бұрын
My textbook did a terrible job explaining this proof, and most proofs I found involve proving itself. Thanks for making this proof crystal clear. Well done.
@reazraza6 жыл бұрын
Blackpenredpen white paper. You are uplifting the channel name. Good job!
@blackpenredpen6 жыл бұрын
Yup!!!! Thanks!!!!
@JM-hu3pk4 жыл бұрын
@@blackpenredpen love this vid. kinda irrelevant, but what pens do you use?
@franseresplandor85917 ай бұрын
this is probably the best teacher I have in terms of all the trigonometic identities. Very simple and consice! Love it!
@carterwoodson88184 жыл бұрын
I am so happy you put this up 2 YEARS AGO!!! thank you so much, never investigated these relationships
@crystalhuang82586 жыл бұрын
I have been looking for a proof just like this and found it. Thank you so much!
@humester2 жыл бұрын
5*: Everything I have found on the Internet so far has been a proof, not a derivation; meaning that they start with the answer and then simplify the answer on the RHS to equal the LHS. Yours is the first real derivation I've found. Love it!
@diesitreinta6 жыл бұрын
This proof videos are my favorite, thanks! Love u ❤
@gustavosedano2946 жыл бұрын
That demostrative videos are amazing!!!
@blackpenredpen6 жыл бұрын
Thank you!!
@BashirArsine2 жыл бұрын
After 11 months, still helpful!
@BigDBrian6 жыл бұрын
an informal way to derive alpha in terms of A and B: Say for example we take sin(40) + sin(60). how would we determine alpha and beta? well, it's not too hard to see it'll be 50-10 and 50+10. alpha is fifty, because it's the average, and beta is 10, because its the difference between each term and the average.
@julianarodrigues18616 жыл бұрын
You make me so happy now, thanks a lot!
@marcioamaral75116 жыл бұрын
Pretty easy identity to prove but still a useful one
@JJ-uj1wi Жыл бұрын
Thank you! I have been find the proofs for this, since the precalculus lesson I attended didn't prove this for us
@headmanlesetlhe16352 жыл бұрын
beautiful magnificently explained.... thank you so much
@sansamman46196 жыл бұрын
THIS IS SO FUN! please keep on proving stuff and do more videos with this OG style!!
@blackpenredpen6 жыл бұрын
San Samman OK!!!!!!
@rithiek54466 жыл бұрын
Wanted to say Thank you! Learnt a lot from you till date :)
@BashirArsine3 жыл бұрын
Great video, thx.
@florianvanbondoc35392 жыл бұрын
That's just great! 😯
@jagsingh25086 жыл бұрын
Thank you very much!!! It becomes so much easier to memorise now that I know how it works, video very much appreciated!
@copperfield426 жыл бұрын
this is a very elegant proof. I on the other hand, started from the 2sin((a+b)/2)cos((a-b)/2) and arrive at sin(a)+sin(b): 2sin((a+b)/2)cos((a-b)/2) =2[cos(a/2)sin(b/2) + cos(b/2)sin(a/2)][cos(a/2)cos(-b/2) -sin(a/2)sin(-b/2) ] =2[cos(a/2)sin(b/2) + cos(b/2)sin(a/2)][cos(a/2)cos(b/2) +sin(a/2)sin(b/2) ] =2[ cos(a/2)sin(a/2)(cos^2(b/2)+sin^2(b/2)) + cos(b/2)sin(b/2)(cos^2(a/2)+sin^2(a/2)) ] =2[ cos(a/2)sin(a/2) + cos(b/2)sin(b/2) ] =2cos(a/2)sin(a/2) + 2cos(b/2)sin(b/2) =sin(2a/2) + sin(2b/2) =sin(a) + sin(b)
@emmamjkang5 жыл бұрын
How did you get from =2[ cos(a/2)sin(a/2)(cos^2(b/2)+sin^2(b/2)) + cos(b/2)sin(b/2)(cos^2(a/2)+sin^2(a/2)) ] =2[ cos(a/2)sin(a/2) + cos(b/2)sin(b/2) ] ?
@Lily-zd6dx6 жыл бұрын
thank you so much!!!
@royler88486 жыл бұрын
The sin (a+b) Vid isn't in the description
@raiedahmednishat88836 жыл бұрын
yah, that's what I looked for too
@blackpenredpen6 жыл бұрын
Boypig24 sorry I forgot. It's here kzbin.info/www/bejne/aITPp36koburbbc
@tariqhaiderbhuiyan24613 жыл бұрын
Really helped me out!
@baskard80186 жыл бұрын
I like the video so much.
@blackpenredpen6 жыл бұрын
Thank you!!!
@alejrandom65924 жыл бұрын
trigonometric proofs are beautiful
@houwen76975 жыл бұрын
this helped me understand! thank you
@eleazaralmazan40896 жыл бұрын
Can you make videos explaining how to solve equations involving the floor function? An example of such equation would be floor(x)-2floor(x/2) = 1. Great videos by the way!
@tasninnewaz67906 жыл бұрын
Everybody know this. your are my favourite teacher and i hoped that it will be a geometric explain.
@blackpenredpen6 жыл бұрын
Thank you!!!
@jimpal51196 жыл бұрын
Where’s the dabbing man? Love the vids👌
@BigDBrian6 жыл бұрын
no please
@mandre23904 жыл бұрын
bless ur soul
@heisalima7 сағат бұрын
Thank you so much.
@anything68896 жыл бұрын
Cool job!!!
@faridsalmanalfarisyi4099 Жыл бұрын
amazing
@balyoz33494 жыл бұрын
thank you so much
@pchk16 жыл бұрын
Very curious at 3:33 . . . Aww, why bother with the clumsy step of multiplying alpha - beta = B by negative one at all? Come on, simply SUBTRACT the whole thing from alpha + beta = A, and you IMMEDIATELY get 2beta = A - B Also, at 4:30 . . . No parentheses will be necessary for single-variable arguments in trigonometric functions, thus it is perfectly ok to write sinA + sinB rather than the, again very clumsy, sin(A) + sin(B) . . . especially that you were already writing in black and red ^_^ Finally, are you also on Facebook? I'd love to join you if you happen to be there!
@wduandy6 жыл бұрын
Can you racionalize 1/[cuberoot(a)+cuberoot(b)+cuberoot(c)] please? Love your videos
@MarkMcDaniel6 жыл бұрын
Did your school tell you that you can't use their classroom white board for videos any longer?
@blackpenredpen6 жыл бұрын
Snarky Mark I live 42 miles away from my school.
@MarkMcDaniel6 жыл бұрын
Ouch, quite the commute.
@malathim28824 жыл бұрын
But be clear with video clarity it's somehow blurrrr
@aneeshsrinivas90883 жыл бұрын
this identity makes it not circular reasoning to use lhopitals rule on lim_{h->0} (1-cos(h))/h, because you can derive the cosine versions of this identity by replacing a with a+π/2, and b with b+π/2, and for proving the derivitives of sine and cosine, just use these identities instead of expanding out via the sum and difference identities, d/dx(sin(x))=lim_{h->0} (sin(x+h)-sin(x))/h=lim_{h->0} (2cos((x+h+x)/2)sin((x+h-x)/2))/h=lim_{h->0} (2cos(x+h/2)sin(h/2))/h, and do the same thing for cosine
@That_One_Guy...5 жыл бұрын
can you derive this formula using euler's formula ? (without subtituting alpha+beta = A and alpha-beta = B ?)
@nikoladjordjevic27066 жыл бұрын
Could you please do int_0^1 int_0^1 [1/(1-xy)] dx dy = zeta(2)? Thank you and of course great channel ;D
@kobethebeefinmathworld9536 жыл бұрын
I wonder who thumbs down
@ალექსანდრეოთხოზორია6 ай бұрын
thanks brother proof of sum to product identities is not in my book for some reason
@FJ-mn2pi4 жыл бұрын
谢谢
@yenyelinito3 жыл бұрын
Link for those pens please lmao
@jahanaraparveen94366 жыл бұрын
e^xcosz-(1/3)e^(3x)cos(3z)+(1/5)e^(5x)cos(5z)-.... Please help me with this series.I am asked to find the infinite sum of this series.Got this from a complex variable book. :/
@malathim28824 жыл бұрын
First I was scared 😬💀 f d channel but it was very useful
@smitashripad97576 жыл бұрын
Does there exists something like that for cosine
@blackpenredpen6 жыл бұрын
Yes! Use the sum and difference formulas for cosine and you can get the results.
@kenichimori85336 жыл бұрын
The point P ≒ P
@dudenD80005 жыл бұрын
老哥,听不懂啊
@shrihari1546 жыл бұрын
For those who looking for video link mentioned in the video i.e formula for Sum of angles here it is: kzbin.info/www/bejne/aITPp36koburbbc
@andrew4ig6 жыл бұрын
solve pls sin(3x)/cos(x)=39/41
@indra90136 жыл бұрын
超
@hariskayani47036 жыл бұрын
Can you solve Z^3 - 4j = 0
@strangemathematician15726 жыл бұрын
What did you ment by w and j? Are they random variables?if they are so you need at lest one more equation to solve them