I Solved A Non-Homogenous Differential Equation

  Рет қаралды 5,200

SyberMath

SyberMath

Күн бұрын

Пікірлер: 21
@pwmiles56
@pwmiles56 11 ай бұрын
From a teaching point of view, it's important that the equation is linear in y. This is what makes it possible to add in multiples of the homogeneous solution to the particular solution.
@SyberMath
@SyberMath 11 ай бұрын
I agree. I should've said that
@andreaparma7201
@andreaparma7201 11 ай бұрын
I like to solve this kind of equations in a slightly different way By differentiating three times, the equation becomes y^(5)-y^(3)=0 (where y^(n) denotes the n-th derivative). This gives y^(3)=h*e^x+k*e^(-x), and by integrating three times y=h*e^x-k*e^(-x)+ax^2+bx+c. We can now substitute in the original equation and get 2a-(ax^2+bx+c)=x^2, which implies (a,b,c)=(-1,0,-2).
@SyberMath
@SyberMath 11 ай бұрын
Awesome!
@Drk950
@Drk950 6 ай бұрын
I did it by the easy way (homogeneous + particular solution), but I liked it the reference to power series at the end
@MichaelJamesActually
@MichaelJamesActually 10 ай бұрын
Idk why, but always loved diff eq. I had also completely forgotten diff eq, so thanks for this!
@SyberMath
@SyberMath 10 ай бұрын
Np. More is coming...
@omograbi
@omograbi 11 ай бұрын
It would be amazing if you devout a special channel for differential equations
@scottleung9587
@scottleung9587 11 ай бұрын
Yeah, I think that would be very cool and helpful since I don't usually encounter problems like these.
@SyberMath
@SyberMath 11 ай бұрын
Good idea. I'm not that knowledgeable on this topic but could learn along the way (just like @aplusbi)
@MichaelJamesActually
@MichaelJamesActually 10 ай бұрын
It would be cool, but I feel yt already pretty well saturated with differential equations content. I’ve enjoyed the complex numbers channel bc I don’t think those types of problems get much attention.
@goldfing5898
@goldfing5898 10 ай бұрын
I would build the derivative three times: y'' - y = x^2 y''' - y' = 2*x y'''' - y'' = 2 y''''' - y''' = 0 Now we have a homogenous ODE. y''''' = y''' The 5th derivative is equal to the third derivative of the function. Set u = y' v = u' = y'' w = v' = y''' Then we have w'' = y''''' w'' = w Which functions are equal to their second derivative? To my mind come w = k*e^(x) w = k*sinh(x) = k*(e^x - e^(-x))/2 w = k*cosh(x) = k*(e^x + e^(-x))/2 Maybe we should try to generalize this to w(x) = k1*e^x + k2*e^(-x) The natural exponential function for k1 = 1 and k2 = 0. The Sinus hyperbolicus function for k2 = -k1. The casinos hyperbolicus function for k1 = k2. Then we must integrate this w function two times...
@andirijal9033
@andirijal9033 11 ай бұрын
Total Solution = Homogen solution + Partikular Solution
@giuseppemalaguti435
@giuseppemalaguti435 11 ай бұрын
Per lomogenea λ^2=1..λ=+1,-1...per la particolare yp=-x^2-2...in sintesi y=c1e^x+c2e^(-x)-(x^2+2)
@JSSTyger
@JSSTyger 11 ай бұрын
My final answer... Yg = Ae^x+Be^(-x)-x²-2 where A and B are unknown constants.
@kianmath71
@kianmath71 10 ай бұрын
Y = C1e^x + C2e^-x - x^2 - 2😊
@seanfraser3125
@seanfraser3125 11 ай бұрын
The homogenous equation is y_h’’ = y_h It’s not difficult to see that y_h = ae^x + be^-x The particular solution is of the form y_p = dx^2 + fx + g Plugging this into the DE, we have 2d - dx^2 - fx - g = x^2 So -d=1, f=0, and 2d-g=0. Thus y_p = 2-x^2 So our general solution is y = ae^x + be^-x + 2-x^2
@vladimirkaplun5774
@vladimirkaplun5774 11 ай бұрын
y"+y=x^2 is more interesting. Anyhow without graphs they do not make sense
@jstone1211
@jstone1211 11 ай бұрын
awful explanation....
@SyberMath
@SyberMath 10 ай бұрын
why? 😮😄
@jstone1211
@jstone1211 10 ай бұрын
@@SyberMath within a minute or so you used at least three different variable substitutions. the display used had no space to show previous work. Not a math professor but I did teach electrical engineering courses during my phd....
I Differentiated Lambert's W Function
9:57
SyberMath
Рет қаралды 3,8 М.
Can You Solve An Interesting Differential Equation?
13:17
SyberMath
Рет қаралды 8 М.
这是自救的好办法 #路飞#海贼王
00:43
路飞与唐舞桐
Рет қаралды 132 МЛН
Haunted House 😰😨 LeoNata family #shorts
00:37
LeoNata Family
Рет қаралды 12 МЛН
小路飞还不知道他把路飞给擦没有了 #路飞#海贼王
00:32
路飞与唐舞桐
Рет қаралды 79 МЛН
How To Solve A Challenging Differential Equation
12:14
SyberMath
Рет қаралды 3,5 М.
I Solved A Nice Exponential Equation from Romania
11:31
SyberMath
Рет қаралды 4 М.
Solving A Non-Linear Differential Equation
11:05
SyberMath
Рет қаралды 7 М.
343867 and Tetrahedral Numbers - Numberphile
12:04
Numberphile
Рет қаралды 166 М.
This is why you're learning differential equations
18:36
Zach Star
Рет қаралды 3,5 МЛН
Integrating A Radical Function | #Calculus
17:00
SyberMath
Рет қаралды 5 М.
A Flipped Differential Equation
11:40
SyberMath
Рет қаралды 7 М.
What exactly is e?  Exploring e in 5 Levels of Complexity
13:34
I Integrated The Square Root of tan(x)
15:57
SyberMath
Рет қаралды 8 М.
"A Random Variable is NOT Random and NOT a Variable"
29:04
Dr Mihai Nica
Рет қаралды 55 М.
这是自救的好办法 #路飞#海贼王
00:43
路飞与唐舞桐
Рет қаралды 132 МЛН