Reminds me of the day I discovered differential operators. Made life so much easier.
@anthonycheng176510 ай бұрын
Can Let u=y' to reduce to second order ODE, first solve y, then integration to solve u
@holyshit92210 ай бұрын
Reduction of order by substitution possible but not necessary After solving homogeneous equation variation of parameters is needed For homogeneous equation we assume that particular solutions are in the form y = e^{λx}
@giuseppemalaguti43510 ай бұрын
Credo che si possa risolvere col metodo della Risposta Impulsiva....che permette di calcolare una yp a partire dall'omogenea ..ma non ricordo... La risposta impulsiva è g(x) =1-cosx..percio la yp(x) =ln[secx+tgx] - xcosx-sinxlnsecx
@SyberMath10 ай бұрын
Hmm. I am not familiar with that
@giuseppemalaguti43510 ай бұрын
@@SyberMathla risposta impulsiva g(x) é la soluzione dell'equazione omogenea con y(0)=y'(0)=0,y''(0)=1...quindi la yp è l'integrale da 0 a x di g(x-t)* sect dt
@holyshit92210 ай бұрын
Do you want proposition for video Calculate nth derivative of te^(xt)/(e^t - 1) We could use product rule for nth derivative but we have to guess or calculate nth derivative of the factors From my observations d^n/dt^n te^(xt) = x^(n-1)(n+xt)e^(xt) , n > 0 d^n/dt^n 1/(e^t - 1) = (-1)^n*e^t*P_{n-1}(e^{t})/((e^t - 1)^(n+1)) , n > 0 P_{n-1}(x) is polynomial of n-1 degree I observed that polynomial P_{n-1}(x) is palindromic We can make these formulas valid for n >= 0 d^n/dt^n te^(xt) = x^(n-1)(n+xt)e^(xt) , n >= 0 d^n/dt^n 1/(e^t - 1) = (-1)^n*P_{n}(e^{t})/((e^t - 1)^(n+1)) , n >= 0 P_{n}(x) is polynomial of n degree but here P_{n}(x) is no more palindromic If you find formula for P_{n}(x) the rest would be easy
@viktor-kolyadenko10 ай бұрын
In 8:18 we can use: en.wikipedia.org/wiki/Cramer%27s_rule