IEEE Floating Point Representation | Representation of Denormalised Numbers and Special Numbers

  Рет қаралды 7,309

ALL ABOUT ELECTRONICS

ALL ABOUT ELECTRONICS

Күн бұрын

Пікірлер: 13
@ALLABOUTELECTRONICS
@ALLABOUTELECTRONICS Жыл бұрын
Other useful videos related to Floating Point Representation: 1) IEEE 754: Single Precision and Double Precision Format: kzbin.info/www/bejne/m5Ctap-Oo7qSrNUsi=aBlp8v7sD2UY6tiQ 2) Fixed Point vs Floating Point Numbers: kzbin.info/www/bejne/sIewaYGBjdiVpaMsi=8yIaPa14s4jwg9Cw Link for the Digital Electronics (Playlist): bit.ly/31gBwMa
@poojashah6183
@poojashah6183 Жыл бұрын
Very well explained 👌🏻👌🏻👍🏻
@marvin5729
@marvin5729 6 ай бұрын
Hello from Germany. Very nice explenation! I only have one question: What would the numer at minute 5:29 be in Decimal (its the -0.00011 * 2 ^-126). Could you give me a Calculation method for that pls
@ALLABOUTELECTRONICS
@ALLABOUTELECTRONICS 6 ай бұрын
Yes, sure. First, you need to separate the given HEX number in 32 bit binary number. Then write it in a different segments. (like sign, exponent and mantissa). Here, since exponent is zero and mantissa is non-zero, it means the given number represents de-normalized number. So, it will be in the form ± 0.000 x 2 ^-126. That means here, exponent is 2^-126. Now, here since the mantissa is 00011. So, overall number will be 0. 00011 x 2^-126. More over since sign bit is 1, so number is negative number. Therefore, the equivalent decimal number is - 0.00011 x 2^-126. I hope, it will clear your doubt.
@AlberTesla1024
@AlberTesla1024 6 ай бұрын
I think there is a mistake, in case of normalized numbers, the biased exponent can be between 0x01 to 0xFE, but in case of denormal number the exponent is 0, which makes the actual exponent equal to 2^-127 not 2^126. To differentiate whether the number has preceding one of not is identified by exponent value which is 1 for all normalized numbers but 0 for denormal numbers. Correct me if I am wrong.
@ALLABOUTELECTRONICS
@ALLABOUTELECTRONICS 6 ай бұрын
The de normalized numbers are used to represent numbers which are smaller than smallest possible normalized numbers. In single precision format, the smallest positive normalized number is 1. 0 x 2^-126. So, to represent numbers between 0 and this smallest number this denorms are used. The thing of the biased exponent holds true only for normalized numbers. For denorms, the exponent is always -126. And the numbers are represented as 0. BBB x 2^-126. So, with this representation, the numbers will be less than the smallest possible normalized numbers. For example, 0.11 x 2^-126. I hope, it will clear your doubt.
@sunandachowdhury1455
@sunandachowdhury1455 27 күн бұрын
@@ALLABOUTELECTRONICS if For denorms, the exponent is always -126, then how it represents the exponent being all 0?
@ayan.bhunia
@ayan.bhunia Жыл бұрын
Thank you 🙏👍
@HosseinKhosravipour
@HosseinKhosravipour 3 ай бұрын
Many thanks for such an interesting explanation.
@mayurshah9131
@mayurshah9131 Жыл бұрын
You are awesome 🎉🎉
@neelkotkar5978
@neelkotkar5978 8 ай бұрын
very good explanation. Thanks for helping!!! :)
@simonepizzelli3799
@simonepizzelli3799 9 ай бұрын
Great video!
@rmeena6972
@rmeena6972 10 ай бұрын
awesome
How Floating-Point Numbers Are Represented
9:56
Spanning Tree
Рет қаралды 39 М.
how floating point works
17:48
jan Misali
Рет қаралды 393 М.
When you have a very capricious child 😂😘👍
00:16
Like Asiya
Рет қаралды 18 МЛН
coco在求救? #小丑 #天使 #shorts
00:29
好人小丑
Рет қаралды 120 МЛН
Denormal Numbers - More Floating Point Madness!
12:08
0612 TV w/ NERDfirst
Рет қаралды 18 М.
IEEE 754 Standard for Floating Point Binary Arithmetic
21:34
Computer Science Lessons
Рет қаралды 261 М.
0 x ♾️ , It's Not What You Think
5:07
BriTheMathGuy
Рет қаралды 397 М.
How to STUDY so FAST it feels like CHEATING
8:03
The Angry Explainer
Рет қаралды 2,5 МЛН
2  Denormalized and Special Floating Point Numbers Revised
7:44
utexascnsquest
Рет қаралды 10 М.
What's Your ENGLISH LEVEL? Take This Test!
21:31
Brian Wiles
Рет қаралды 4 МЛН
Extreme Cases in IEEE 754 Floating Point Representation | IEEE 754 Format
9:33
IEEE Standard for Floating-Point Arithmetic (IEEE 754)
9:16
Neso Academy
Рет қаралды 164 М.