Yes, but have to make do with what they have provided. ( the woes of college students)
@rvkodali11013 жыл бұрын
Mr.Ray told exact meaning of Riemann differentiation. What a superb lecture
@mrmaaza12312 жыл бұрын
Absolutely loved your lecture. You are amazing !
@arjunbanik86065 жыл бұрын
clearly, understandable and great lecture.. highly recommended
@myhobbies1288 Жыл бұрын
Excellent explanation 👌👌👌 Thanks for educating the world 🙏 From your lecture one can understand intuitively the meaning of Riemann Integral
@kobebryant89027 жыл бұрын
This is very helpful, keep up the great videos!
@coderavec2mdschool20248 жыл бұрын
that's awesome the lecture is so understandable great job
@aparajitopaul113411 жыл бұрын
when proving that u(p1,f)>=u(p2,f) he wrote v1=sup{f(x)/xbelongs to [x*,xi-1]} but i think it should be v1=sup{f(x)/xbelongs to[xi-1,x*]} because we are considering a point x* between xi-1 and x i......similarly v2=sup{f(x)/xbelongs to [x*,xi]}......see 35:56 and pls tell me if i'm wrong
@vibodhj3498 жыл бұрын
See, we calculate the U(p,f) by taking the supremum of the ith interval ( xi-1,xi). The fact is that we start calculating the U(p,f) from the top to the bottom of the interval while in the L(p,f) it is from bottom to top conventionally. Because we take the supremum we have to start calculating from the top. I hope you got the answer to your queston. If you still have any doubt, contact me on vjadhav937@gmail.com.
@andrejilievski72315 жыл бұрын
Quality of video has to be improved,when you will do it, you will become top 5 math/science channels on youtube
@tusharhalder643 жыл бұрын
Onek help hoyeche sir for my msc course ! Thanks sir
@zahari2015 жыл бұрын
When Dieudonné was the scribe of Bourbaki, for many many years, every printed word came from his pen. Of course there had been many drafts and preliminary versions, but the printed version was always from the pen of Dieudonné. And with his fantastic memory, he knew every single word. I remember, it was a joke, you could say, "Dieudonné, what is this result about so and so?" and he would go to the shelf and take down the book and open it to the right page.
@prachiargulewar24094 жыл бұрын
Superb
@bathama.k.77599 жыл бұрын
very help full.....
@sujanmuhuri24717 жыл бұрын
Sir plz make a video for darboux theorem and infinite no of set of riemann integration
@ritobansen35537 жыл бұрын
could anyone please tell me What is U (p,f) as in the U?
@amanmiglani60434 жыл бұрын
sum of of all the rectangle aboive the region is upf
@samayaparibartan8834 жыл бұрын
Upper Sums of function f, which will be equal to sum of area of all the superscribed rectangles formed by the supremum(Mi) and the sub-intervals. I know you must have found the answer already.. but i am writing this just for revision of my understanding 😅
@gatehamper12 жыл бұрын
amazing......
@denismatt14 жыл бұрын
why the height of the smaller triangle is r (this is also r) ? Isnt is slightly bigger than r? (4:21) I mean it probably tends to r is n tends to infinite.
@vibodhj3498 жыл бұрын
No, the height of the smaller triangle is rcos(2pi/n) by simple trigonometry. The height of the bigger triangle is r.
@ghodium16 жыл бұрын
i love this india accent, whether the india person is prescribing antibiotics or a mathematical proof
@asitojh24366 жыл бұрын
Thank you sir
@trucommander6 жыл бұрын
YOU ARE THE BEST!!! Your lecture is very clear and easy to comprehend. Thank you sir.
@medha72366 жыл бұрын
After 36 min I suppose the interval taken for supremum of f (x) is wrong.
@abhimuscat14 жыл бұрын
never underestimate the indian accent, though it may seem funny to you, the indians are some of the most brilliant minds in the planet, the average indian 12th grader can integrate twice as fast as an MIT graduate (doesnt necessarily mean that the indian guy is more brilliant or anything), just saying.....
@ashikbiswas62834 жыл бұрын
Riemann integral all math dan
@pran1zzle14 жыл бұрын
THE TOTAL AREA
@ritusheokand40477 жыл бұрын
nice
@jyotirmaydas2505 жыл бұрын
Sir this lecture is really great
@commentOshimasu13 жыл бұрын
@commentOshimasu good video, though
@mikialemikiale4152 ай бұрын
Unbelievable i found my self
@zahari2015 жыл бұрын
A number of academic mathematicians feel that the Riemann integral no longer belongs in an undergraduate course of instruction. Here is a brief HISTORY of the project. If you think that your students (and you) have not been confused by the standard undergraduate and graduate education in integration theory please take this QUIZ. We provide this information here to keep the real analysis community up-to-date on the project. Our two texts REAL ANALYSIS
@lyaha811 жыл бұрын
reminds me of apoo...
@sayantandas87394 жыл бұрын
...
@certainstrength15 жыл бұрын
LOL
@raunaksengupta528910 жыл бұрын
riemann integral ka balatkar ho gaya.....
@saikatpk2810 жыл бұрын
What superb language of a educated student ...... Hats off to you.....
@vibodhj3498 жыл бұрын
Kyu bhaisaheb, accha nahi laga video?
@cfunlearn11 жыл бұрын
You go to school and learn to speak first,
@sujanmuhuri24717 жыл бұрын
Sir plz make a video for darboux theorem and infinite no of set of riemann integration
@sujanmuhuri24717 жыл бұрын
Sir plz make a video for darboux theorem and infinite no of set of riemann integration