Induction Proofs Involving Inequalities.

  Рет қаралды 63,826

Dr. Trefor Bazett

Dr. Trefor Bazett

Күн бұрын

Пікірлер: 34
@montanasebastiano3564
@montanasebastiano3564 4 жыл бұрын
I appreciate you going through the extra steps proving 2k > k + 1 for k > 1. I thought it wasn't necessary at first but after rewatching I understand the importance of this step.
@anshulkumar9086
@anshulkumar9086 3 жыл бұрын
I watched yours video many many times .you are amazing for understanding each and every step very crystal clear. You are made for mathematics.
@AmateurThings
@AmateurThings 6 жыл бұрын
Even better than my university professor
@davidwoznerable6750
@davidwoznerable6750 4 жыл бұрын
As a math teacher candidate in Oklahoma struggling through Number Theory thank you!
@particleonazock2246
@particleonazock2246 4 жыл бұрын
Brilliant explanation, you have helped an eighth-grader comprehend this beautiful mathematical proof example.
@DrTrefor
@DrTrefor 4 жыл бұрын
Great to hear!
@georgelaing2578
@georgelaing2578 3 жыл бұрын
It was nice that your example required an adjustment to the base case!
@zaidahsan
@zaidahsan 10 ай бұрын
Hello Dr. Bazett, Thank you for these thought out videos. The idea of using the ladder analogy is really amazing. Also since this resource is quite useful, and as some have pointed out the transitive inequality in the comments. I want to elaborate this so it becomes obvious, and helps someone who might find it a bit confusing. In the basis case you proved that 2^0 > 0 | k = 0 Then assuming 2^k > k we want to show that 2^(k+1) > (k+1). This can be directly shown from the transitive inequality, which I like to write in the form of a chain. 2^(k+1) = 2 . 2^k = 2^k + 2^k We apply the assumption on the first of the two terms on the left side. Then, 2^(k+1) > k + 2^k [ From the Assumption i.e. 2^k > k ] 2^(k+1) > k + 2^k >= k + 1 [ Since 2^k >= 1 for all k >= 0 ] Then from the transitive property of inequalities the first term on the left side is greater than the term in the middle, which is equal to or greater than the term on the right side. Thus the term on the left is necessarily greater than the term on the right. 2^(k+1) > k + 1. Q.E.D Assuming the assumption we have thus proved the induction.
@ayo_fadedvisuals
@ayo_fadedvisuals 8 ай бұрын
GOAT
@josephwillyyose3443
@josephwillyyose3443 5 ай бұрын
Classy
@ShanaAngliang
@ShanaAngliang 4 жыл бұрын
This video has helped me to understand MI, thanks Dr Trefor!
@DrTrefor
@DrTrefor 4 жыл бұрын
Glad it was helpful!
@parthparmar1642
@parthparmar1642 4 жыл бұрын
What your age bro?
@Kenspectacle
@Kenspectacle 4 жыл бұрын
Hello, I have a question, how did we arrive to k+k > k+1? I am still confused on what does that conclusion is trying to achieve? and how did we get to that conclusion? many thanks in advance! :)
@novelas3536
@novelas3536 3 жыл бұрын
Make k + 1 = to some variable, and you will see that the induction step follows the induction hypothesis by stating that 2^some variable > some variable which is exactly like 2^K > K, but for k > 1.
@michell5706
@michell5706 Жыл бұрын
Why does it turn to 2k and not 2^k instead?
@Shannxy
@Shannxy 4 жыл бұрын
If (2^n > n) actually holds true for n = 0,1 Why does the induction steps lead to having to replace it with (k > 1) instead?
@thegeneralgamer4921
@thegeneralgamer4921 4 жыл бұрын
I'm confused as well >.< I feel like it should have been k>=0 because I've never seen a case where you have k>1 but also still prove k=0,1 unless it was something like the Fibonacci sequence. But you only need to have individual cases there bc those are special cases, whereas here, like you said, it holds true for k=0,1 as well.
@ericsabacan2801
@ericsabacan2801 4 жыл бұрын
Hi Sir. I got interested with the way you explained this lesson. I'm doing a project and I find this video very useful for students, may I have the permission to use your video. Thank you very much.
@DrTrefor
@DrTrefor 4 жыл бұрын
Glad it helped!
@vincentchanyurugwa5991
@vincentchanyurugwa5991 28 күн бұрын
Is it not k is greater or equal to 1 that we need. Since we are to use 1. Why use k greater than 1
@MrConverse
@MrConverse 2 жыл бұрын
Why not just use ‘greater than or equal to’ in the last step instead of all that extra work?
@slientsoul4609
@slientsoul4609 Жыл бұрын
shouldn't it be for k ≥ 1 instead of k > 1
@suvayudas2626
@suvayudas2626 4 жыл бұрын
Can u help me in this 2^(n+1)=1
@iamrxheem
@iamrxheem 5 жыл бұрын
What software does he use to do the writing?
@iamrxheem
@iamrxheem 5 жыл бұрын
@@DrTrefor Awesome thanks. We're actually learning this topic in class and I came across this video. Gonna recommend it.
@EpicZombieGT
@EpicZombieGT 3 жыл бұрын
i love u bazett
@luvochiya4134
@luvochiya4134 9 ай бұрын
I'm the most confused individual 😂😂😂😂😅😅😅😅😅
@delex6005
@delex6005 6 жыл бұрын
how did 2 change to k in 4.18
@delex6005
@delex6005 6 жыл бұрын
Trefor Bazett Ohh..I get it now..Thanks so much
@codecleric4972
@codecleric4972 10 ай бұрын
Old comment but I'm replying if anyone else was confused. I was confused too but basically the assumption is 2^k is greater than k. His equality has 2 * 2^k and he can thus assume also that 2 * 2^k is greater than 2 * 2^k
@suhailawm
@suhailawm 5 жыл бұрын
tnx
@B0sTonCeltics20534
@B0sTonCeltics20534 Жыл бұрын
Oy bruv why didn't you just start the problem with the given domain n > 1
@MrConverse
@MrConverse 2 жыл бұрын
Why not just use ‘greater than or equal to’ in the last step instead of all that extra work?
Strong Induction // Intro and Full Example
10:09
Dr. Trefor Bazett
Рет қаралды 232 М.
Sum of first n cubes - Mathematical Induction
12:34
Prime Newtons
Рет қаралды 92 М.
When you have a very capricious child 😂😘👍
00:16
Like Asiya
Рет қаралды 18 МЛН
小丑教训坏蛋 #小丑 #天使 #shorts
00:49
好人小丑
Рет қаралды 54 МЛН
Induction: Inequality Proofs
14:30
Eddie Woo
Рет қаралды 281 М.
00b - Mathematical Induction Inequality
18:47
SkanCity Academy
Рет қаралды 34 М.
Inequality Mathematical Induction Proof: 2^n greater than n^2
9:20
The Math Sorcerer
Рет қаралды 190 М.
This equation blew my mind // Euler Product Formula
17:04
Dr. Trefor Bazett
Рет қаралды 51 М.
Math News: The Fish Bone Conjecture has been deboned!!
23:06
Dr. Trefor Bazett
Рет қаралды 206 М.
The reason you should shuffle 7 times
19:27
Dr. Trefor Bazett
Рет қаралды 84 М.
Induction Inequality Proof: 2^n greater than n^3
10:27
The Math Sorcerer
Рет қаралды 40 М.
Mathematical induction with inequality
12:53
Prime Newtons
Рет қаралды 33 М.
When you have a very capricious child 😂😘👍
00:16
Like Asiya
Рет қаралды 18 МЛН