Infinite square well states, orthogonality and completeness (Fourier series)

  Рет қаралды 43,352

Brant Carlson

Brant Carlson

Күн бұрын

Пікірлер: 43
@NiflheimMists
@NiflheimMists 4 жыл бұрын
22:39 The blue curve should be going up to n = 2 since there are two local extrema. The function should only be able to reach a local extrema once if n = 1.
@MiguelGarcia-zx1qj
@MiguelGarcia-zx1qj 3 жыл бұрын
I was about to comment precisely this :) For this function (saw tooth or linear ramp), all odd terms (n=1, n=3, etc.) have coefficient c[n]=0
@patrinos13
@patrinos13 9 жыл бұрын
shouldnt the second term (Ψm) at 12:57 be without the complex conjugate? plz reply
@SeverSpanulescu
@SeverSpanulescu 9 жыл бұрын
+patrinos13 Of course, there is a typo there. He didn't mean it.
@idiosinkrazijske.rutine
@idiosinkrazijske.rutine 5 жыл бұрын
I have one small remark. If we made the analogy of inner product of functions with the dot product of vectors, we could have also explained the meaning of formula for Cn trough the idea of projection, which is also related to dot product. Cn is a number we get by doing orthogonal projection of f(x) to suitable „basis vector". The function space bears close resemblance to the ordinary Euclidean space. Later the jump at 0 and a is the so called "Gibbs phenomenon" for those that would like to google it. The overshoot remains whatever is the number of sines we add, the amount of overshoot remains the same it just gets narrower.
@MiguelGarcia-zx1qj
@MiguelGarcia-zx1qj 3 жыл бұрын
For my PhD studies, I had to write an essay on the Gibbs phenomenon; Then I was not experienced enough on Fourier Analysis to realise that it is closely related to convolution ... (nevertheless, I got a good grade on that work).
@SeverSpanulescu
@SeverSpanulescu 9 жыл бұрын
Very accessible explained, especially the Fourier sine transform. But first of all I admire your ability to write with the mouse, it really isn't easy. Good old school!...
@NiflheimMists
@NiflheimMists 4 жыл бұрын
It's probably a drawing tablet. Otherwise, that would be really impressive!
@matrixate
@matrixate 4 жыл бұрын
Correct me if I'm wrong but isn't 2/a supposed to have a square root at 17:51 ?
@kimikaarai7105
@kimikaarai7105 4 жыл бұрын
I think so too. that's what Griffiths has as well
@tripp8833
@tripp8833 5 жыл бұрын
Fourier was a badass.
@DewyPeters96
@DewyPeters96 7 жыл бұрын
Please can you add the answers to the questions?
@danielsolomonaraya118
@danielsolomonaraya118 6 жыл бұрын
Beautiful and clearly expressed lectures. Thank you so much, Doctor Brant @BrantCarlson, for making your lectures public to everyone.
@Warriorpend2
@Warriorpend2 6 жыл бұрын
What software do you use to record these, if you don't mind me asking?
@firstnamelastname1464
@firstnamelastname1464 3 жыл бұрын
Thank you so much! I love you!
@mostafaaboulsaad577
@mostafaaboulsaad577 6 жыл бұрын
hiii 17:16 the integration part became a\2 why? i think it has to be 1 if it is normalized any help!!!
@scientiadetpacem7930
@scientiadetpacem7930 5 жыл бұрын
This is explained in the previous video. Essentially sin^2 is rewritten by using trigonometric identities. Solving the integral that way gives you a/2. Video with timestamp here: kzbin.info/www/bejne/pHermX-AfKmBfqM
@albertliu2599
@albertliu2599 6 ай бұрын
Check Your understanding: Part 1: C2=0, C3=1, C4=0 Part 2: -a/pi
@chymoney1
@chymoney1 6 жыл бұрын
I love you
@shubhamsharma-kg6wc
@shubhamsharma-kg6wc 4 жыл бұрын
answer to part 01 : c2=0, c3=1 and c4=0 answer to part 02 : c2=-a^2/2*pi ps. correct me if i am wrong
@surodeepspace
@surodeepspace 4 жыл бұрын
I get the same mate
@puritybundi8204
@puritybundi8204 3 жыл бұрын
I think for part 2, you forgot to multiply by 2/a that was outside the integral. I got -a/pi
@oAbraksas
@oAbraksas 7 жыл бұрын
amazing work
@prabhakarolichannel9747
@prabhakarolichannel9747 8 жыл бұрын
13.33 why two conjugate?
@daniel.scheinecker
@daniel.scheinecker 8 жыл бұрын
prabhakar oli he made a mistake. It should be Psi* Psi
@raghunathkarri8145
@raghunathkarri8145 7 жыл бұрын
why do we need psi*.. Even (psi)(psi) would give the same result
@denizn.tastan6847
@denizn.tastan6847 7 жыл бұрын
raghunath karri (psi)*(psi) would give the same result as (psi)(psi) if psi is a real function. We know that it can be complex so we use the conjugate rather than square
@imppie3754
@imppie3754 6 жыл бұрын
In part 2, thats -a/(2+x) or (-a/2)+x?
@AmitSahu-od1yp
@AmitSahu-od1yp 9 жыл бұрын
really very good explanation .... Thanks Sir
@christophervsilvas
@christophervsilvas 3 жыл бұрын
Part 1: C2=0, C3=1, C4=0 cus duh. Part 2: C2 = -a/π but the general solution is: f(x) = sigma (n=0, to infinity) [-2asin(2nπx/a)/(2nπ)] i.e. Cn = -2a/(nπ) where n is even (that's why I multiply it by 2 in the sum)
@Gu1TaMastaJ
@Gu1TaMastaJ 10 жыл бұрын
nice! really liked this lecture thanks a lot
@kanzalabbasgondal6952
@kanzalabbasgondal6952 3 жыл бұрын
Thank you so much 😘💖
@sunnypala9694
@sunnypala9694 6 жыл бұрын
Thank you so much sr you are awesome thanks a lot it helped me lot
@yanemailg
@yanemailg 8 жыл бұрын
Great. Thanks
@Salmanul_
@Salmanul_ 4 жыл бұрын
shouldn't n+1 be the number of nodes
@1ashad1
@1ashad1 4 жыл бұрын
If we consider the end points that is, otherwise it's n-1.
@Salmanul_
@Salmanul_ 4 жыл бұрын
@@1ashad1 ooh ok makes sense
@StarFriedTree
@StarFriedTree Жыл бұрын
08:48, that m≠m laugh stinks of unwelcome foreshadowing
@bonbonpony
@bonbonpony 3 жыл бұрын
22:22 Take a look at the boundaries of the box: can you explain _how on Earth_ did you get a _positive_ value of the combined wavefunction (black) at that boundary if ALL those sines have a value of 0 there? How is it possible to add a bunch of zeros (even infinitely many) and get a non-zero value? :q Let alone that previously you used the same argumentation to rule out the cosines as valid solutions (since they cannot be 0 at boundaries), and yet now you're saying that the black wavefunction have a non-zero value there :q Don't you think that this logic isn't sound? You said that the wavefunction _cannot_ be nonzero at boundaries, because it is zero outside of the box, and by the continuity condition, it must also be zero at the boundary. By the same argument, it must tend to 0 in the close vicinity of that boundary inside the box. The example wavefunction (black) doesn't do that - it would have to be discontinuous at the boundary (i.e. abruptly change its value from positive to 0), which violates the continuity requirement. Can you explain?
@OmnipotentO
@OmnipotentO 3 жыл бұрын
You're mixing up examples. The example at the end is only to show how you can approximate any smooth function as a summation of many sine function. The black function is just given. That's what we're trying to approximate
@MiguelGarcia-zx1qj
@MiguelGarcia-zx1qj 3 жыл бұрын
@@OmnipotentO, I'd say that Brant was a bit quick jumping form QM waves to waves in general; more so after having discussed the infinite potential square well. I don't intend to critizise; I'm having a great time with this course (some lapsus may haphazardly creep in, though) :)
@rudrasingh2732
@rudrasingh2732 4 жыл бұрын
Try this video: kzbin.info/www/bejne/r3PZpIGrmr18rZY
@bryanpawlina1050
@bryanpawlina1050 11 жыл бұрын
blehbleh
Infinite square well example computations and simulation
31:21
Brant Carlson
Рет қаралды 27 М.
Superposition of stationary states
21:37
Brant Carlson
Рет қаралды 36 М.
Jaidarman TOP / Жоғары лига-2023 / Жекпе-жек 1-ТУР / 1-топ
1:30:54
«Жат бауыр» телехикаясы І 30 - бөлім | Соңғы бөлім
52:59
Qazaqstan TV / Қазақстан Ұлттық Арнасы
Рет қаралды 340 М.
진짜✅ 아님 가짜❌???
0:21
승비니 Seungbini
Рет қаралды 10 МЛН
What is the i really doing in Schrödinger's equation?
25:06
Welch Labs
Рет қаралды 342 М.
Infinite square well (particle in a box)
21:31
Brant Carlson
Рет қаралды 179 М.
The more general uncertainty principle, regarding Fourier transforms
19:21
The Fourier Series and Fourier Transform Demystified
14:48
Up and Atom
Рет қаралды 848 М.
Stationary solutions to the Schrodinger equation
19:24
Brant Carlson
Рет қаралды 45 М.
To Understand the Fourier Transform, Start From Quantum Mechanics
31:37
Physics with Elliot
Рет қаралды 517 М.
What's a Tensor?
12:21
Dan Fleisch
Рет қаралды 3,7 МЛН
Potential functions in the Schrodinger equation
22:34
Brant Carlson
Рет қаралды 64 М.
Can you crack this beautiful equation? - University exam question
18:39
Normalization of the wavefunction
28:18
Brant Carlson
Рет қаралды 109 М.
Jaidarman TOP / Жоғары лига-2023 / Жекпе-жек 1-ТУР / 1-топ
1:30:54