You've just explained in a matter of minutes something my lecturer has failed to do over several hour long lectures. THANK YOU!
@aryanabdolahi8469 Жыл бұрын
I'm a Masters student of Industrial Engineering in Iran and gonna start a course for this topic soon. This video was a nice and well explained introduction to ILP. Thanks.
@chakravarthit.72598 жыл бұрын
Joshua, your explanation is simply SUPERB ! .... Hats off to you.....!! ......Animation is really GREAT....!!!
@Ziru276 жыл бұрын
One of the most perfect and intuitive explanation i ever seen. Thank you very much! Amazing!
@makuruba Жыл бұрын
wow. i have my operations research test in 6 hours.. and so, finding this playlist is the motivation i needed for the day. Thank you !!
@rabbilbhuiyan56663 жыл бұрын
Very good and effective explanation to understand all integer and mixed integer LP solutions with graphical presentation. Thanks a lot! I have ended a week attempt of learning mixed integer LP solution after this materials.
@snigdhamorbaita73486 жыл бұрын
Wow!! I have been struggling to understand this for a while but with this video I now understand it very well. Thank u so much... great work.
@SimpleMacReviews7 жыл бұрын
i have an exam tomorrow, been studying 2-3 days like crazy saw your videos along with my course material. Thank you so much!!
@eliasinul2 жыл бұрын
best and shortest video to explain the concept. Thanks a lot !
@NoctLightCloud4 жыл бұрын
this was PERFECT! You're master. Thank you so much!
@dew0111 ай бұрын
amazing explanation!
@ksbalaji12873 жыл бұрын
Beautiful video with clear explanation and great visuals. Thanks, Joshua.
@prasaddavange38372 жыл бұрын
Thanks!
@joshemman2 жыл бұрын
Welcome! Thanks for your generosity, Prasad. Much appreciated.
@jvbb20056 жыл бұрын
Much better than my lecturer, Kudos to you!
@mahamarooj50024 жыл бұрын
very nice finally i understand the difference between these methods....... Thank you!!!!
@유서연-h2p7 жыл бұрын
Awsome!! Your video is brief but substantial enough
@MinhLe-xk5rm5 жыл бұрын
Great vide on linear programming relaxation. Thank you so much!
@martindarin815223 күн бұрын
I love your video's Emmanuel!
@joshemman23 күн бұрын
🙏
@mnchester2 жыл бұрын
Amazing video!
@PapercutFiles6 жыл бұрын
Thanks, Joshua! Your videos really help!
@inteligenciaartificiuau4 жыл бұрын
Congratulations. Very good explanation, simple and direct.
@clairelin94032 жыл бұрын
Thank you for this great video!
@joshemman2 жыл бұрын
Glad it was helpful!
@abdullahalmehadi61522 жыл бұрын
This is awesome!
@user-db2wp1dx8k5 жыл бұрын
Really clear explanation, thank you very much!
@R4G3QU1TT3 жыл бұрын
The slope of the line at 5:10, and later at 5:36, how is it determined exactly? Because it passes through X=4 and Y=6, which is the opposite of the objective function?
@joshemman3 жыл бұрын
Take the objective function and set it equal to a number like 24 (easy number to work with because of 6&4). Then find two points that satisfy the equation -and that's your line. For 6X + 4Y = 24, two easy points are (0, 6) and (4, 0)
@R4G3QU1TT3 жыл бұрын
@@joshemman Thank you very much!
@sharmatutorials82973 жыл бұрын
Thankyou Sir 🙏🙏for this wonderful video 😇😇☺️☺️
@sharmatutorials82973 жыл бұрын
Pls tell the book u follow for this topic , Sir .....
@arko38229 ай бұрын
Awesome stuff...
@TotoTb6 жыл бұрын
Thanks Joshua! Very good explanation!
@Guan-l8l8 ай бұрын
thank you, a very informative overview
@joshemman8 ай бұрын
You are welcome!
@1DrFahad18 жыл бұрын
Thank you for your great videos :)
@madhukiranattivilli2321 Жыл бұрын
Hi Joshua Simplex LP algo (using Dantzig's pivot rule) helped me to get the max result for "x y are both real numbers" case and (max 28.636) "x y are both integers" case (max 28), but I didn't help for the 2 mixed integer cases (x integer case, y integer case). I'm unable to go beyond max value of 28. I see you got 28.4 for "x integer" case. Do u have a video where u explained the algo for mixed integer case? Thanks!
@joshemman Жыл бұрын
Sorry Madhukiran, I don't have a video for that.
@najeeafsanehee4375 жыл бұрын
Thanks Emmanuel... it was amazing explanation
@marcinmich92694 жыл бұрын
Amazing work.
@Ryankeebs7 жыл бұрын
love watching your videos :) thank u!
@王子文-i5m5 жыл бұрын
It is a great vedio.
@LachlanNoone Жыл бұрын
Brilliant video.
@joshemman Жыл бұрын
Many thanks!
@leizhang3329 Жыл бұрын
very good video, thanks a lot
@joshemman Жыл бұрын
You are welcome!
@agustinmariapardo98324 жыл бұрын
Hey great video! Do you have the slides!? Thanks
@evanroycelinezo46822 жыл бұрын
Hello, how do you find or solve for the objective function line?
@joshemman2 жыл бұрын
See if this helps: kzbin.info/www/bejne/poGTgpSda55nfdE
@svnsunarikani88654 жыл бұрын
Great Sir. Will you suggest any material which includes many problems on this topic...which is easy to understand..thank you...waiting for your reply sir
@joshemman4 жыл бұрын
You can try: *Quantitative Analysis for Management *Introduction to Management Science *Quantitative Methods for Business Here's one online: wps.prenhall.com/wps/media/objects/2234/2288589/ModB.pdf
@akshaywani55282 жыл бұрын
How do we arrive at values of X & Y. Is there any other way, rather than Graphical Trial and Error?
@joshemman2 жыл бұрын
It’s really not trial and error. It’s systematic. You can also use the approach in any of these two videos to solve it: kzbin.info/www/bejne/Z5-1fKarisiBmpY kzbin.info/www/bejne/pmTbqZpnnd6hjqc
@Belay.Mihrete5 жыл бұрын
You are Great, Thank you!!!
@ayatelnabawy66965 жыл бұрын
Hi Dr. Joshua, What if not all the coeffecients in the binding constraints are +ve ? Is the rounding can be applicable ? and Which direction for both x and y per each constraint ? Many Thanks
@joshemman5 жыл бұрын
If 'not all' coefficients are positive, rounding could be tricky, especially when there is a negative coefficient in the objective function. The rounding rules stated here may not hold true with negative coefficients.
@TheBreadBoard7 жыл бұрын
Great video!
@jontis123 Жыл бұрын
Just a disclaimer, I haven't studied linear programming for very long at all, so forgive me if my assumptions regarding positive coefficients here is wrong, but: You say that rounding down always results in a feasible solution for a maximization problem, but surely a rounded down solution could fall outside of your constraint functions, thus making it infeasible. For example, if your green constraint (3x + 4y >= 6) was instead >= 12, then the solution acquired by rounding down, i.e. x=1 y=2 is no longer feasible. To me at least, this seems like it keeps the mentioned requirement of positive coefficients in the constraints.
@huynguyenquoc8657 Жыл бұрын
in maximization problem, when rounding down, why the optimal solution is not (2;2) or (3;1)?? they're also inside the feasible region right...
@joshemman Жыл бұрын
Rounding down here essentially means keeping the whole number and ignoring the decimal.
@jinright6953 жыл бұрын
God bless you homie ❤️❤️❤️❤️❤️
@dhgcrack3r1113 жыл бұрын
Yo. How’d he get x & y @ 1:10 ❤️
@UjjwalGarg092 жыл бұрын
awesome!!
@70ME3E6 жыл бұрын
that was great! thanks!
@leopd1823 жыл бұрын
amazing
@H.sena11115 жыл бұрын
thank u so much for this video
@jiatongyu12243 жыл бұрын
THANK YOU!!!!
@timotimo99617 жыл бұрын
Hello Joshua Thanks for the super cool awesome videos - you are the best Could you please make some videos on the following Simplex Algorithm, Duality Theory, Branch and Bound, Dijsktra, Floyd Warshall, Dynamic programming and Decision Theory?? Thanks in advance
@alonsojimenez85494 жыл бұрын
Thanks very much
@axelalatorre6218 жыл бұрын
hi, could you explain me how do you determine the feasible area? I know it is related to the constraints but sometimes you divide by two and you change x by y. Thanks!
@joshemman8 жыл бұрын
You can begin here: kzbin.info/www/bejne/ZoWnaniHmM2YkK8
@theprivatespeaker Жыл бұрын
2:15 2:34 4:41
@王子文-i5m5 жыл бұрын
Joshua,u are wrong. The best solution, the maximum of the LP relaxation is always not less than the maximum of the ILP. Your graphic method is wrong.