Constrained Optimization: Intuition behind the Lagrangian

  Рет қаралды 39,797

MATLAB

MATLAB

Күн бұрын

Пікірлер: 39
@KHMakerD
@KHMakerD Жыл бұрын
“You’re not going to be solving it by hand.” *laughs then cries in graduate student*
@BrianBDouglas
@BrianBDouglas Жыл бұрын
😂😭
@vnagamohankrishnap1596
@vnagamohankrishnap1596 Жыл бұрын
You are a single piece, bro. You're explaining intuitions, makes me excited all the time.
@BrianBDouglas
@BrianBDouglas Жыл бұрын
I appreciate it!
@3d_chip
@3d_chip 4 ай бұрын
my god, two weeks of lectures explained in one video. you are great man.
@ryanfeng
@ryanfeng Жыл бұрын
Most inspiring video I ever seen. I got two takeaways: transferring none resolvable problem to an equivalent resolvable problem; gradient is a good way.
@Joshjson
@Joshjson Жыл бұрын
Wish this was the way it was explained in university. Liked and subbed
@BrianBDouglas
@BrianBDouglas Жыл бұрын
Thanks!
@AnythingGoesCodes
@AnythingGoesCodes 8 ай бұрын
had an undergrad professor so determined to stop cheaters that he only allowed scientific calculators which didn't bother me until he expected us to do regression
@SarahImeneKhelil
@SarahImeneKhelil 11 ай бұрын
Brian, can you do for us a summer school course for control engineers I'll be the first one to attend if it's you talking about the intuition behind control!
@MrPepto93
@MrPepto93 5 ай бұрын
I really have to learn to try ideas and equations with simple examples. I was so afraid Lagrange multipliers and Lagrange equation and its sense that I just dropped it off. How lucky that I just saw with the corner of my eye that thumbnail on my recommendation list with a characteristic Brianish drawing style with the "Lagrangian" word within the title. I knew before watching that you will help as always. Gosh you are a great educator man.
@faraway27
@faraway27 Жыл бұрын
Thanks Brian, I always look forward to new Tech Talks! Could you do a video on MPC? That would be awesome!
@BrianBDouglas
@BrianBDouglas Жыл бұрын
I appreciate it! MathWorks already has a Tech Talk series on MPC so I doubt I'll make one in the near future. kzbin.info/aero/PLn8PRpmsu08ozoeoXgxPSBKLyd4YEHww8. Perhaps one day when we revisit some of the older videos.
@harrytsai0420
@harrytsai0420 Жыл бұрын
Nice video! Looking forward to the nonlinear constrained optimization part!
@nitinjotwani69
@nitinjotwani69 Жыл бұрын
Hey, could you recommend any non linear constrained optimization videos?
@griffinbur1118
@griffinbur1118 Жыл бұрын
Great video. In the interest of being precise and thinking about what might trip up new learners, someone who's paying really close attention will find 2:45 confusing since you can't have " *thee* partial derivative with respect to both x_1 and x_2". Instead, the gradient is a vector of all of the partial derivativeS, plural, of f( *x* ), where the ith element of the gradient is the partial derivative of f with respect to the ith element of *x* Sorry for the pedantry, but from my own experience, the problem is that we often ask math students to pay close attention to exactly that kind of fine distinction in other contexts, so a description of the gradient that, taken literally, can't exist is likely to cause minor confusion for talented students. That said, phenomenal video. This would be very useful for teaching someone who has only a knack for scalar calculus one of the most important ideas in multivariable calculus quite efficiently.
@BrianBDouglas
@BrianBDouglas Жыл бұрын
Thanks for the clarification. I appreciate hearing this type of feedback because it helps me change the way I present future videos. Cheers!
@AngeloYeo
@AngeloYeo Жыл бұрын
Great as always! 🎉
@BrianBDouglas
@BrianBDouglas Жыл бұрын
Thanks!
@Curious_Southerner
@Curious_Southerner Ай бұрын
Thanks for this great video! 6:56 - I am a bit confused about interpreting the gradient of the constraint as it does not reflect the direction of maximum ascent of j(x) or c(x). So, how should I think about this?
@BrianBDouglas
@BrianBDouglas Ай бұрын
Hello! It is pointing in the direction of the maximum ascent of c(x). The black line is when C(x) = 0. Every combination of x1 and x2 that are below that black line is negative, and every combination of them above the black line is positive. And therefore, if you are standing on the black line and you want to ascend the slope, you'd walk up and the to the right to increase the value of C(x).
@Pedritox0953
@Pedritox0953 Жыл бұрын
Great video!
@kmishy
@kmishy Жыл бұрын
Great teaching❤
@BrianBDouglas
@BrianBDouglas Жыл бұрын
Thanks!
@blower05
@blower05 4 ай бұрын
I am confused about the slope obtained by differentiation. They are the slopes of dz/dx(i) but not the projection to the x-y plane. Thus, I cannot understand how it can be parallel? However, they are parallel if the "projections" slopes , ie. dx(2)/dx(1) is calculated and used. However, it is just 0 and were not used in the calculation.
@user-dp9yn7zf4l
@user-dp9yn7zf4l 3 ай бұрын
5:45 the visual illusion make the dark line look curved .... XD
@saisatyam3314
@saisatyam3314 23 сағат бұрын
Super intutive😊❤
@MATLAB
@MATLAB 21 сағат бұрын
Glad you liked it.
@razakawuni2138
@razakawuni2138 2 ай бұрын
This is very helpful
@MATLAB
@MATLAB 2 ай бұрын
Glad you like it!
@HeavenlyGodlyAngelic
@HeavenlyGodlyAngelic 3 ай бұрын
I love this
@DeepakRawat-t6s
@DeepakRawat-t6s Жыл бұрын
Can't see the video
@HansScharler
@HansScharler Жыл бұрын
It's working for me. What do you see?
@DeepakRawat-t6s
@DeepakRawat-t6s Жыл бұрын
@@HansScharler I just see a black screen
@BrianBDouglas
@BrianBDouglas Жыл бұрын
Did you get it figured out?
@MrPepto93
@MrPepto93 5 ай бұрын
how do you type with eyes closed? :O
@acc3095
@acc3095 Жыл бұрын
❤❤❤❤❤ 🎉
@Mohdvaqui
@Mohdvaqui Ай бұрын
nice
@MATLAB
@MATLAB Ай бұрын
Thanks for watching!
Understanding Lagrange Multipliers Visually
13:18
Serpentine Integral
Рет қаралды 372 М.
Intuition and Examples for Lagrange Multipliers (Animated)
14:59
Casual Science
Рет қаралды 35 М.
It works #beatbox #tiktok
00:34
BeatboxJCOP
Рет қаралды 41 МЛН
Tuna 🍣 ​⁠@patrickzeinali ​⁠@ChefRush
00:48
albert_cancook
Рет қаралды 148 МЛН
黑天使被操控了#short #angel #clown
00:40
Super Beauty team
Рет қаралды 61 МЛН
Everything You Need to Know About Control Theory
16:08
MATLAB
Рет қаралды 586 М.
lagrangians in economics: constrained optimization
10:17
econ with emily
Рет қаралды 32 М.
gradient descent & loss functions
4:28
pranav
Рет қаралды 541
Why the Riccati Equation Is important for LQR Control
14:30
Honda's New V3 Electrical Compressor Engine Explained
14:52
driving 4 answers
Рет қаралды 11 М.
Understanding the Discrete Fourier Transform and the FFT
19:20
The Syrian Consequence: Russia's Withdrawal || Peter Zeihan
8:47
Zeihan on Geopolitics
Рет қаралды 512 М.
Lagrangian and Hamiltonian Mechanics in Under 20 Minutes: Physics Mini Lesson
18:33
Understanding the Z-Transform
19:56
MATLAB
Рет қаралды 127 М.
Los abanicos holográficos están a punto de revolucionar el negocio
0:23
Сколько стоит IPhone на родине Samsung?
0:53
Дмитрий Шилов
Рет қаралды 1,6 МЛН
Айфон сдался: когда сделают складной телефон
0:11
Короче, новости
Рет қаралды 187 М.
Самый лучший телефон
0:58
Hi Store Media
Рет қаралды 413 М.