00:36 Instead of solving for `dx`, you could just observe that you have `dx/x` on the right side, which matches the `dx/x` in your integral, so you could replace this part with `du` inside the integral right away. After replacing also `(ln x)²` with `u²`, you get the integral of `u²·du` without the need of solving for `dx`. This also applies for many other of your examples. Just a little shortcut ;)
@shikhaparjapati28594 жыл бұрын
Wow!sir thnku so much love from India👌👌👌
@blackpenredpen8 жыл бұрын
Integral of (lnx)^2/x
@joaomiguelbarros79503 жыл бұрын
YOU ARE THE BEST. THANK YOU.
@youtubeviewerFF3 жыл бұрын
thank you kind human ♥
@garystewart73228 жыл бұрын
Thank you very much buddy!
@Hogojub6 жыл бұрын
Yay i did it! I learned this kind of math only because of your videos
@Hogojub6 жыл бұрын
I did it with once with u-sub and once with IBP :)
@anthonyjh022 жыл бұрын
1:48 where does the final du go? It just disappears?
@carultch Жыл бұрын
When you carry out an integral, the differential (the "d whatever" term) disappears by definition. Given that f(x) is the derivative of F(x), this means when you integrate: integral f(x) dx The result is: F(x) + C In this case, we're integrating u^2 relative to u. This means f(x) = u^2, and F(x) is a function such that F'(x) = u^2. The power rule allows us to find F(x), by increasing the exponent by 1, and having the new exponent join the coefficient as the denominator, giving us 1/3*u^3. We of course add the +C to allow this to represent all possible functions whose derivative in the u-world is u^2.
@tarek_talab Жыл бұрын
thanks a lot
@anarosef3 жыл бұрын
Thank you so much !
@hannahs_music3 жыл бұрын
Thank you
@sivabharathisivam54116 жыл бұрын
Thank you very much.😊
@ahmedoumakhir85363 жыл бұрын
thank you sir
@edimoperondijr50987 жыл бұрын
Thank's for the video!!
@magomorlin9 жыл бұрын
thanks
@dahakabarkley33899 жыл бұрын
Thx
@777loveforever4 жыл бұрын
Muchas gracias!!
@procerpat92233 жыл бұрын
you can do this in your head
@i_am_anxious025 жыл бұрын
x=e^u dx=e^u•du Integral of u^2•e^(-u)•e^udu Integral of u^2du u^3/3 ln(x)^3/3
@lesliesilva57746 жыл бұрын
jiji justo lo que buscaba
@stevenjaimes95786 жыл бұрын
Leslie Silva pero esa integral esta mal bb
@mohammedhmad52616 жыл бұрын
Find the integral of( (lnx+1)^2)/x. I'm not know sulution
@mohammedhmad52616 жыл бұрын
Please help me
@ernestschoenmakers81814 жыл бұрын
@@mohammedhmad5261 Coming to the rescue, you have the following integral: I = int of (ln(x)+1)^2/x*dx, let's open up the brackets then you'll get: int of (ln^2(x)+2*ln(x)+1)/x*dx, now split the integral into 3 terms: int of (ln^2(x))/x*dx+ int of 2*ln(x)/x*dx+int of (1/x)*dx, know:(1/x)*dx=d(ln(x)) so we apply this to the integrals: int of ln^2(x)d(ln(x))+int of 2*ln(x)d(ln(x))+int of d(ln(x))= I = (1/3)*ln^3(x) + ln^2(x) + lnIxI + C, this is the solution.
@farazriyaz90783 жыл бұрын
You can integrate it as shown above or you can take u=lnx+1, which I think would make things easier. Then, dx=xdu You get, ∫((lnx+1)²/x)dx = ∫u²du Thus, ∫u²du = u³/3 + C = (lnx+1)³/3 + C Which you can expand as such: (lnx)³/3 + (lnx)² + lnx + C