This is one of those integrals that looks "simple enough" when you're taking an exam.
@NWSCS3 ай бұрын
This is one of those integrals that just gets way out into the weeds. Multiple substitutions, hyperbolic trig functions. Very challenging. Great job explaining the steps. Especially the ones where someone can easily get lost on.
@paulstjean85985 ай бұрын
I do enjoy your patience and step by step breakdown. Too bad I'm retired and no longer have students to share this with. Keep it going.
@josephparrish7625 Жыл бұрын
I love this problem. And, of course, I’ve seen it before. How would a student who has never seen it know what the first move would be? I used to tell my students, “now that you’ve seen me do it, remember the first move!” My students would ask, “how did you know how to do it?” and I would answer, “I saw my professor do it in college!” Lol Anyways, I love your very clear and detailed explanation of a great problem. As always, you amaze with your teaching skills!
@savitrinamdeo-zr5jo Жыл бұрын
Very nice way of explanation nice n clear voice
@bravo2992 Жыл бұрын
I think our plan was to get rid of root
@Gaurav_C_Kher Жыл бұрын
@@bravo2992getting to 2t²/(t⁴+1) is natural enough, but the steps after that just seem too complicated for any student to do in the first time imo
@ThembaNzama-q7c Жыл бұрын
That's great !!!
@sivasakthisaravanan485010 ай бұрын
There are people who can do it when they see it for the first time, without being taught! But these days as we have Wolfram Alpha, we don't have to manually do any integration😊
@jayniesgottagun Жыл бұрын
My God, you're smart and have a gift for teaching. I plan to absorb all you have to give.
@Jop_pop Жыл бұрын
I've never dived this deep into integrals before and this is probably the most complicated integral ive seen explained so succinctly
@syed334411 ай бұрын
I did it like this: I=int(sqrt(tanx)) Now cosider a new integral J J=int(sqrt(cotx)) I+J=Int.(sqrt(cotx) + sqrt(tanx)) I+J=sqrt(2)*Int.( (sinx+cosx)/sqrt(sin2x)) we know that sin2x = 1-(sinx-cosx)² I+J=sqrt(2)*Int.( (sinx+cosx)/sqrt((1-(sinx-cosx)²) Now substitute sinx+cosx=t (cosx+sinx)dx=dt I+J=sqrt(2)*int.( dt/(sqrt(1-t²)) I+J=sqrt(2)*sin-¹(sinx+cosx)+c1 NOW I-J=Int.(sqrt(cotx) - sqrt(tanx)) I-J=sqrt(2)*Int.( (sinx-cosx)/sqrt(sin2x)) we know that sin2x = (sinx+cosx)²-1 I-J=sqrt(2)*Int.( (sinx-cosx)/sqrt(((sinx+cosx)²-1) Now sinx+cosx=t (cosx-sinx)dx=dt (sinx-cosx)dx=-dt I-J=sqrt(2)*int(-dt/sqrt(t²-1)) J-I=sqrt(2)*int(dt/sqrt(t²-1)) J-I=sqrt(2)*ln|x+sqrt(x²-1)|+ c2 J+I=sqrt(2)*sin-¹(sinx+cosx)+c1 Subtract them -2I= sqrt(2)*[lnx+sqrt(x²-1)-sin-¹(sinx+cosx))+c3
@a.anithapreethysiva15424 ай бұрын
@@syed3344damn
@rhm5158 Жыл бұрын
I used to do this stuff over40 years ago and it’s amazing to me how much I don’t remember. You just blew my mind.
@paulinofm10 ай бұрын
Maravillosa integral y maravillosa solución. Thanks from Spain. !!!!!
@cesarmiranda2205 Жыл бұрын
Outstanding explanation, you are the guy, I really enjoyed, best regards from Brazil.
@jesusandrade137811 ай бұрын
That form of the final solution is the most simplified and symmetric form, because you can also express the inverse hyperbolic tangent as a logarithm, and yet another form if you use partial fractions after 2t^2/(t^4+1)
@Viewpoint31410 ай бұрын
Nice clear writing for this interesting integral.
@arungosavi5698 Жыл бұрын
Mind boggling ,sir
@murdock5537 Жыл бұрын
This is amazing. Many thanks for this awesome "journey".
@PrimeNewtons Жыл бұрын
Glad you enjoyed it!
@hansulrichkeller665120 күн бұрын
Das sah so einfach aus! Wunderbar erklärt: Gratulation aus der Schweiz!
@trivikram49625 ай бұрын
i can finally binge ur videos, as i have just started integration. thanks
@saarike9 ай бұрын
Huh, what an integral. Thanks for sharing. Never stop learning or you not living 👍👌👍I have to watch this many times...
@juanortegon98982 күн бұрын
Sir, your explanations are superb. It still is a difficult integral.
@NamregSelaur-up4or Жыл бұрын
I solved that integral with two maths skills. 1. Using substitucion. 2. Completing the perfect trinomial.
@FedericoNassetti7 ай бұрын
Keep going your videos are the highlight of my day❤
@VishwanathMN-m5i Жыл бұрын
Sir you are a genius at mathematics thank you
@tamilchelvanramasamy873311 ай бұрын
Great Sir
@stinkybohoon719 ай бұрын
Excellent Teacher, congrats
@عابرون-ن7ذ Жыл бұрын
Good math go head for more thank you man 👍👍👍
@ethanbartiromo288810 ай бұрын
I actually watch all of your videos in 2x speed lol
@bittuKumar-sw3ux2 ай бұрын
From India absolutely amazing sir
@servictorovich2576 Жыл бұрын
однозначно, красивое решение. Достойно похвалы
@maxborn7400 Жыл бұрын
I remember once in school, one of us wanted to troll the teacher, so we asked, "what is the integral of e^(tan(x))". While it was a joke, I have sometimes wondered about it. Integral of e^(sin(x)) is a Bessel function of order 0. Integral of e^(tan(x)) shows some interesting, convergent properties. But I never get around to formalising it, only numerically studying it. Would be interesting if we could some day find an analytical expression for that, or just a "special functions" recursive series (I think I have that somewhere).
@wasagamer001 Жыл бұрын
Thanks for the video sir !
@rob876 Жыл бұрын
You made a difficult integral look easy.
@lukaskamin755 Жыл бұрын
Wow, that was intense, kinda a detective story to find the suspect (the integral) LOL
@michalkorczyk41899 ай бұрын
if this video is too long or slow for you, press F12 and type "document.querySelector(".video-stream").playbackRate = 3;" to konsol
@nitishjha82594 ай бұрын
Different level of problem. Very nice..
@Hiram_-tg5wr2 ай бұрын
great solution and also a fan of the handwriting. But can we get answer in the form of natural log instead of inverse hyperbolic tangent. We could use the natural log substitution in form of 1/(x^2-a^2).
@oscarfranciscosantanafranc894811 ай бұрын
You are very smart. God bless you!
@jesusmartinez9662 Жыл бұрын
your videos are the best!
@TopRankX Жыл бұрын
Keep going man! Love what you do ❤
@madsniper5927 Жыл бұрын
And that was perfect Thank you for the lesson
@omxky4 ай бұрын
Love your dedication BRO keep samshin integrals
@AshokKumar-ul6dg4 ай бұрын
Thanks - you always make it so simple and intuitive. ...A hallmark of a genius-teacher. 🎉❤ A small observation. The first term has + sign and the second term has -. ( I is inv tan exp and the second is hyp as derived. In the last step, by oversight you have inverted u and v. ( Happens to me always over the board😢)...
@AngelZangata9 ай бұрын
You are my favorite ❤❤❤❤ bro
@WazifatutTiyebah4 ай бұрын
Thank you soooooo much! I was helped a lot by this!
@bibliophilesayan320 Жыл бұрын
Sir can't we use The method of by parts to solve this problem??
@haithamsuneer2182 Жыл бұрын
Hey sir i hope ur doing well can i ask a doubt after we get the integral as ∫2dt/(t²+1/t²) cant we factor the deno as {(a²+b²) = (a+b)² -(2ab)} SO WE GET 2∫dt/(t+ 1/t)² - √ 2² then just apply the formula so the final answer in terms of t will be 1/√2 {ln [(t+ 1/t)+ √2] / [(t+ 1/t) - √2]} + c
@Necrozene8 ай бұрын
I love your stuff man! Love maths. Maths is my "God Zero"!
@abhishekpathak4973 Жыл бұрын
That was wonderful ❤
@martys9972 Жыл бұрын
Great derivation, but when tanh instantly turns into tan for v/sqrt(2), at 23:48, you really should have mentioned that correction or edited over it.
@PrimeNewtons Жыл бұрын
I'll have to watch it again to see what you're referring to. Thanks for the feedback.
@kawenjanathan65388 ай бұрын
Thank you for the save ❤
@AvrajitGRoy Жыл бұрын
Amazing man!
@devonwilson577611 ай бұрын
Greetings. Thanks for sharing.
@joelmacinnes23919 ай бұрын
I knew that the integral of 1/x^2+a = 1/sqrt(a) .arctan(x/sqrt(a)) + c but not why that was the case, thanks for the video!
@amolgameryt7159 Жыл бұрын
I had solved this question recently it kinda esy If you are preparing for competitive examinations
@carlosguzman93429 күн бұрын
Very Good!!!
@carlosguzman93429 күн бұрын
And very Good teacher
@roddos11 ай бұрын
Piękny wywód.
@lindsaywaterman201011 ай бұрын
Brilliant!
@JotaMartinez-c1q Жыл бұрын
Thanks, integral sqrt sen x
@jesusandrade137811 ай бұрын
Some integrals require more than 2 or 3 consecutive substitutions or methods to get a solution, and there may be equivalent solutions.
@paulmatthewduffy Жыл бұрын
WOW!
@martyknight4 ай бұрын
Wow
@nibirhasan4142 Жыл бұрын
how can we write root 2 φ as the result of that integration? as tanh^2 x+ sech^2x=1
@Harbingersknight21 Жыл бұрын
Thanks this problem was in my text book
@adamuzewudu7 күн бұрын
great man
@vadimtokman12311 ай бұрын
Could you differentiate to prove there is no errors? BTW, great job!!!!
@PrimeNewtons11 ай бұрын
I did
@lebesguegilmar1 Жыл бұрын
The maestro. Very inteligent your tecnic of solution. The same strategy of solution if the int \sqrt{\cot x}dx? And too \int \sqrt{\sec x}dx? The variable \phy and \theta not same? Here in the Brazil congratulation teacher
@vashu471 Жыл бұрын
I solved this question yesterday in my school in one try ✌️
@Occ88111 ай бұрын
Do you study in college or highschool...you might be genius
@moorecable10 ай бұрын
Learned a lot. But why not let u be cos(X) . Then it's sqrt-(lncos(x)) . You can get ride of the negative as cos(-x) is also cos(x).
@PrimeNewtons10 ай бұрын
If I knew it was a better option, I would have used it.
@piyushhh.54 Жыл бұрын
Actually this is a very famous question in our board(exam conducts) education system
@Shashi_227 Жыл бұрын
Your 📸 are most recommended
@herbertsusmann9868 ай бұрын
This is why they came out with books of tables of integrals! People doing real work want to look it up in a book and not try to derive it from first principles and probably get a sign wrong or something!
@ChalkyWhiteChalkyWhite4 ай бұрын
Facts
@emmanuelseiman2725 Жыл бұрын
Cool but sqrt(tanx) +1/sqrt(tanx) is always >1 (ex: 1.46 for π/6) so you have to use coth−1 instead of tanh−1. It is always necessary to pay attention to the domain of definition of hyperbolic trigo. functions tanh−1 ∈ (-1;1) and coth−1 ∈ (-∞;-1)∪(1;∞)
@jesusandrade137811 ай бұрын
You are right
@noid3571 Жыл бұрын
I had this setup on my exam and I was stuck, I just couldn't figure out what to do and wasted so much time. So after the exam I put this problem into symbolab, since nobody got the answer, and I couldn't beleve the result Thanks for the video : )
@omaraladib2165 Жыл бұрын
حلوة ولكن الطريقة طويلة
@antoniopena11834 ай бұрын
Damn
@AdampteyAlbert21 күн бұрын
How can I understand this? Oh my God!!
@Bertin-q3y Жыл бұрын
((tanx)^2)/ 2(tanx)^0,5
@gideonkudgorgi226 Жыл бұрын
O Bruv, why is the answer more complicated than the question itself 😅😅😅😅
@jesusandrade137811 ай бұрын
Because the integral is more complicated than the derivative (the integrand). That is why integration is more difficult than differentiation. Differentiation is just mechanical/algebraic manipulation and simplification, and integration is an art. And many elementary expressions, functions, or integrands don't have elementary integrals/antiderivatives
@Bertin-q3y11 ай бұрын
-ln(sinX)^0,5
@ShunhungHeung6 күн бұрын
It is too difficult.
@Vikram-xc3pb11 ай бұрын
Just another ordinary problem for Jee advance aspirants😂😂
@ache6407 Жыл бұрын
What do you do for a living? Are you a teacher? You’d make a good one