Sorry for the reupload. I actually had a mistake on the integral of 1/(x^2-a^2) in the previous video. I will make up to you guys by checking my answer by differentiation! That video will be done soon!
@zackthotho74597 жыл бұрын
Np. it is fine
@lxathu7 жыл бұрын
This one's more worth the storage area of google than a dozen 9 percent of the content of YT.
@KeyMan1377 жыл бұрын
blackpenredpen Thanks
@AhnafAbdullah7 жыл бұрын
Did you have to redo the video? or just edit the definition that showed on screen
@subinmdr7 жыл бұрын
How do we factorize (u^4 + 1) ? plz
@barqueros20017 жыл бұрын
you know something is hard when blackpenredpen uses five colours
@seshnarayan79723 жыл бұрын
I only noticed 4 colours
@spooky25263 жыл бұрын
@@seshnarayan7972 blue black red green purple!
@createyourownfuture54102 жыл бұрын
@@spooky2526 Where is purple?
@esajpsasipes2822 Жыл бұрын
@@createyourownfuture5410 he mentioned he uses purple for the second part of observe section (10:39) although it doesn't look that diffirent from blue
@Gillespie287 жыл бұрын
I think my professor summed up integration in a nice way. He said differentiation is all about technique. You see a scenario and have a set of rules you then follow. Integration is a form of art. It's much more intricate and delicate.
@blackpenredpen7 жыл бұрын
TheDaltonGillespie I totally agree!!! Has he done this integral with u guys?
@agmt2336 жыл бұрын
My Further Maths teacher calls integration Black Magic. Two kinds of people I guess
@marcushendriksen84155 жыл бұрын
Integration is definitely more difficult, and thus satisfying
@tommyron17925 жыл бұрын
I agree. It takes a clever mind to do differentiation problems with ease. But it takes a creative mind to do integration problems.
@shoobadoo1235 жыл бұрын
AGMT further math? Are you international baccalaureate?
@MrSnowy7377 жыл бұрын
Imagine doing all this and then forgetting the +c
@Thelimitsof5 жыл бұрын
Hamish Blair lol
@shayanmoosavi91395 жыл бұрын
You would get zero marks in exam😂😂😂😂
@yrcmurthy83235 жыл бұрын
Edit the video
@triviumfanmexico5 жыл бұрын
It actually happened to me in an exam :(
@الأستاذأكرمقطار5 жыл бұрын
According to the question. For example, if the question is to find an original function for the next function, the answer without the constant is correct. But if the question is assigned to all the original functions. It must make +C
@eganrabiee6275 жыл бұрын
"Welcome to the Salty Spitoon, how tough are ya?" "How tough am I? I just integrated a trig function!" "Yeah, so?" "integral(sqrt(tan x))dx" "Uh, right this way..."
@@createyourownfuture5410 on Mac it’s just option + b Idk about windows but you can copy/paste it
@whiz85697 жыл бұрын
"1+1 is 2, right?" Calculus, everybody.
@blackpenredpen7 жыл бұрын
Yes. But in Z2, 1+1=0.
@blazep58817 жыл бұрын
well 1+1 is 1 if you account for boolean algebra :)
@ganaraminukshuk07 жыл бұрын
You know you're high on math(s) when you forget what 1+1 is.
@aronquemarr74347 жыл бұрын
1+1=10 in binary
@guisilva98157 жыл бұрын
1+1=3
@rileywells30456 жыл бұрын
Mr Math Man. Math Me a Man. Make him integrate the square root of tan.
@kastormorgan15366 жыл бұрын
stealing my joke, still love you though babe
@Chrisuan4 жыл бұрын
Me when finding this channel: "wtf is going on?!" Me rewatching 1 year later after having seen every bprp video: "alright easy didn't even need the DI setup"
@tesfayebabore68623 жыл бұрын
this is pure game. There are very very few maths teachers at level of you. Thank you.
@viktorsundstrom12177 жыл бұрын
Integration is just the easiest thing ever... I can integrate √tanx + e^x² in seconds: Set up the integral: ∫ √(tan(x)) + e^x² dt And then just use the "inverse" power rule: (t)√(tan(x))+ (t)e^x² And we're done... I didn't say that I'ld do it with respect to x...
@restitutororbis9646 жыл бұрын
Viktor Sundström LOL, or you could use horseshoe integration, Indeed one of the most powerful mathematical tools out there.
@neilshah7546 жыл бұрын
Still forgot the +c dude 😂
@cesarturanzasfarill29766 жыл бұрын
Sólo los pendejos dicen que está facil resolver un problema.
@gbugis67065 жыл бұрын
@@neilshah754 *depression intensifies*
@pablovirus4 жыл бұрын
@@cesarturanzasfarill2976 calmate viejo, era un chiste. No lo entendiste??
@FingertipsOfTheNight4 жыл бұрын
Ok, so in the beginning we have a pretty simple mathematical expression while the result in the end is something horrible. Things tend to evolve naturally from more complex to simpler. I therefore consider it normal to leave this formula unintegrated. Thank you for all your thumbs up ! :D
@XTheDentist6 жыл бұрын
I passed my semester of Calc 1! I did not fully understand everything but I believe I got a strong majority of it & I will be working on some of my weaknesses during break to prepare for Calc 2. For some reason when we got to U-substitution, everyone was confused but it seemed to make sense to me just based off the few example she gave in class and somehow that was all I needed. Anyway, so during last class before our final, she did a little review & answered questions. Someone asked about this sqrt(tanx) and she was like "oh you cant solve this with your current toolset, wait till next semester" and I was like "I can solve it" because I had all this false confidence from having understood the whole U-sub stuff. Well turns out this is a VERY difficult one lol. I guess if you are a student and want to be prepared for integrals, just spend a week studying just THIS one integral and you should be good to go lol.
@프로틴요플레2 жыл бұрын
I'm preparing a transfer exam for Korean universities and there was this question on my preparation problem set. Your solution was so helpful brother, thanks a lot!
@Awai_quotes2 жыл бұрын
And what you doing? In uni?
@프로틴요플레 Жыл бұрын
@@Awai_quotes Electrical and Computer Engineering, but I think I failed the exam. I might just quit and make indie game
@alfredomulleretxeberria4239 Жыл бұрын
@@프로틴요플레 So...how did it go for you?
@vishsri3 жыл бұрын
Wow..you demonstrated this before 100k subs more than 3 years ago, today you have 687k. Wishing you for the next 313k
@blackpenredpen3 жыл бұрын
Thanks
@parkeryoung24713 жыл бұрын
@@blackpenredpen but what is special about the number 313 ?
@prakharjain213 жыл бұрын
@@parkeryoung2471 it's prime
@joshuacobblah364 Жыл бұрын
@@parkeryoung2471 to make it a million subscribers
@Shome20493 жыл бұрын
I just saw you instagram reel, where you give credit question and searched for this integral on KZbin. And I am so glad I found your video 😀!
@blackpenredpen3 жыл бұрын
😆
@GustavoMerchan797 жыл бұрын
Evil integral to place on an exam ... :/
@rawn42034 жыл бұрын
Would have to be like the only question or 1 of 2 questions.
@MelonMediaMedia4 жыл бұрын
I'm from India, and i am practising for this exam, I can assure you, there are more brutal questions.
@rahimeozsoy42444 жыл бұрын
@@MelonMediaMedia yeah for Indiana this is ez or normal
@sgsnake2x3 жыл бұрын
@@MelonMediaMedia im guessing they give you the space because with an A4 blank paper this would quickly turn messy for me as my handwriting is pretty big
@Wu-Li3 жыл бұрын
This one is an easy problem
@hmlawdavid20034 жыл бұрын
19:05 Try to differentiate THIS to give sqrt(tan x)
@RyanLucroy7 жыл бұрын
14:41 "This is the two, so what should I do?" What a rhyme :O
@rajendramisir35306 жыл бұрын
I like this integral and its anti-derivative. I am impressed with your technique of using trigonometric and u-substitution along with algebraic manipulation to arrive at the answer.
@weerman447 жыл бұрын
15:02 WIZARD! Where can I buy this magic blackpen??
@agfd56597 жыл бұрын
WTF! I didn't even notice it before!! How did he do that?!
@morganmitchell40177 жыл бұрын
He edited it because he forgot the (-) sign
@weerman447 жыл бұрын
Haha I understand that Just a silly comment ;)
@vvsutar61797 жыл бұрын
Morgan Mitchell Johnson
@habiburrehman71086 жыл бұрын
hahaha i also noticed after you comment.....
@mahj14 жыл бұрын
I LITERALLY LOVE YOU SO MUCH YOU DESERVE THE WHOLE WORLD
@pasodirect5 жыл бұрын
Ez annyira bonyolult, hogy nincs értelme ennyit számolni, de blackpenredpen igazi zseni !
@Johan-st4rv6 жыл бұрын
god damn I love math
@blackpenredpen6 жыл бұрын
Me too!!!
@Kino-Imsureq7 жыл бұрын
10:54 defenitely most important part
@pkiverson7 жыл бұрын
Slightly more straightforward (although much longer/messier): Factor x^4 + 1 = (x^2 + sqrt(2)x+1)(x^2 - sqrt(2)x+1), then do partial fractions, complete the square in the denominators and solve. This saves you from having to figure out the trick where you add 1/u^2 and subtract 1/u^2.
@DGCubes7 жыл бұрын
Oh man, I love this video. I watched the entire thing and enjoyed every second of it! Keep up the good work on your channel. :)
@Someone-cr8cj7 жыл бұрын
DGCubes what are YOU doing here??¿
@DGCubes7 жыл бұрын
What can I say, I like calculus. :P
@blackpenredpen7 жыл бұрын
thank you DGCubes!!
@metalmathprofessor14677 жыл бұрын
Me too, I watched the whole thing wondering what was going to happen next! Really a great calculus problem. I'm going to show it to all of my students!
@thephysicistcuber1757 жыл бұрын
BOI!
@dr.rahulgupta75732 жыл бұрын
Simple presentation of the difficult integral in a nice manner . Thanks .
@morganthem7 жыл бұрын
So... u substitute for fx Square u = sqrt (tanx). See that 2udu = sec^2(x) dx. Squaring u^2 = tanx gives us tan^2(x) = sec^2 (x) -1 = u^4 which we can see as sec^2 (x) = u^4 + 1. Thus dx = 2udu/u^4 + 1. Plug in original equation to have integral of u*(2u/u^4 + 1)du. Multiply top and bottom by 1/u^2 to get complex fraction with sum of squares in denominator. Complete the square to get (u + 1/u)^2 - 2, which has derivative of inside equal to 1 - 1/(u)^2. Now we want two integrals (why? it is not clear unless you see the tanh^-1 and tan^-1 option coming up), one with 1 - 1/(u)^2 in numerator and other with 1 + 1/(u)^2 in our numerator. Because the completed square can have two forms we can have the appropriate denominators to do two more substitutions, this time with t and say w. If we do the substitutions correctly we have two integrals, one being of 1/(t^2 - 2), and our other being of 1/(w^2 + 2), both in their respective worlds. A formula exists for these forms to be integrated neatly into tanh^-1 and tan^-1 forms. Substitute u back in for t, w, and sqrt (tanx) for u. Do this correctly, and then Add c and we're done. I did this mostly for my own understanding, but I'm fairly sure I didn't skip too much for it to act as a quick summary.
@blackpenredpen7 жыл бұрын
This is great! It's good to work out the problem on your own or along the way.
@vidaroni7 жыл бұрын
You, my good sir, are turning calculus into art! Awesome video!
@prollysine2 жыл бұрын
Gratulálok, lenyűgöző végig az átváltások sorozata ! Főleg az (U^2 + (1/U)^2) átalakítása !
@AlbertoRamirez-cw6dy4 жыл бұрын
When you do all of this in the exam and you realize the integral was sqrt(tanx + 1)
@Adam_42_017 жыл бұрын
10/10 what a trip
@blackpenredpen7 жыл бұрын
Yea, I know!
@rogerrb77766 жыл бұрын
The most difficulty integral that i ever seen in my entire life! But it was really good xD
@blackpenredpen6 жыл бұрын
Thank you : ) And..... there's the integral of cbrt(tan(x))
@raytheboss46502 жыл бұрын
@@blackpenredpen imo that’s easier than this
@pankajkumarpandey66583 жыл бұрын
This is lengthy problem. Very few can solve in first time. We can only solve this problem if we practice at home. Your explanation is very nice
@AhnafAbdullah7 жыл бұрын
I just differentiated this myself, it starts out ridiculously complex, but it slowly starts to fit in with everything, good luck on doing it! You might need 6 boards to do it, I managed to do it in 1 board, but I had to rub out a lot of the work out I did
@ramking7869 Жыл бұрын
Differentiating sqrt(tanx) is not hard at all😂
@RayTracingX Жыл бұрын
@@ramking7869 he is about differentiating the antiderivative of sqrt(tanx)
@ashotdjrbashian96063 жыл бұрын
I've seen this video a couple years ago but decided to comment only now. First of all, very nicely done! Without trying to diminish guy's effort and all the excitement of the viewing public, I just wanted to remark that from the view of pure math this is absolutely worthless. Here's why: In all applications (including physics, engineering, and even math) ALL integrals are definite. This integral would be of interest only if integral is from, say 0 to pi/2. In couple of steps now I'll solve the problem of integrability and the value of that integral. First, simple substitution v=pi/2-x translates this integral to the integral of \sqroot(cotv) over the same integral. Second, cotv is approximately inverse the of v for small v, so the question is \sqroot(1/v) integrable, and the answer is, of course yes. And we are done! If somebody needs the numeric value, just take integral of \sqroot(1/v) from 0 to 0.01 and then calculate the remaining part from 0.01 to pi/2 by whatever method of approximate integration.
@MagnusSkiptonLLC7 жыл бұрын
I majored in physics in school and always preferred the more pure abstract mathematical parts of it. Watching this video is like taking a mental vacation back into the past. I'm happy that I was able to follow it through to the end on my first viewing :)
@EyadAmmari4 ай бұрын
Brilliant. So many techniques in one shot.
@anthonyjaas6 жыл бұрын
Very well work dude, the resolution was easier than I thought, I had problems when using trinomio. You got a like and a new subscriber!
@DriverMate6 жыл бұрын
6:13 out of context is beautiful
@JayOnDaCob2 жыл бұрын
This turned to blackpenredpengreenpenbluepenpurplepen real quick
@blackpenredpen2 жыл бұрын
😆
@jilagamnagendrakumar55225 жыл бұрын
10:43 that's your brilliancy sir
@aikanikhil243 жыл бұрын
We can solve this in some other way too. We can write sqrt tanx as 1/2 {(sqrt tanx + sqrt cotx)+ (sqrt tanx - sqrt cotx)},and then break these into sin cos expressions,and then subtitute sinx + cosx = t and sinx-cosx = k in the first and second integrals respectively,and then apply the standard integral formula. Anyways love you process too!
@RB_Universe_TV4 ай бұрын
Ahh yes BlackpenRedpenBluepenGreenpenPurplepen
@unoriginalusernameno9994 жыл бұрын
Or you can do integration by parts! (i paused at 2:40 to try myself) First, use substitution to get integral of sqrt(tan(x)) = integral of u*2udu/u^4+1 Now do integration by parts to get, integral of sqrt(tan(x)) = u*(integral of 2udu/x^4+1) + integral of integral of 2udu/x^4+1 Use substitution again (set z=x^2) to get u*arctan(x^2) + integral of arctan(u) What's the integral of arctan(u)? it's u*arctan(u) - ln(1+u^2)/2 So we have integral of sqrt(tan(x)) = 2u*arctan(u) - ln(1 + u^2)/2 and substitute u = sqrt(tan(x)) back to get the answer: 2sqrt(tan(x))arctan(sqrt(tan(x))) - ln(1 + tan(x))/2 Now I am going back to the video to see how you did it and see if I'm right or not!
@unoriginalusernameno9994 жыл бұрын
well...I'm wrong :'D lol
@aashishkarki78674 жыл бұрын
You made me fall in love with mathematics!❤️ Thank you!
@cruciflux86344 жыл бұрын
Did you guys notice how he changed his pens at 05:23? That was awesome!
@AlejandroRodriguez-lq9mz7 жыл бұрын
Watching for second time, now i got it! :D Great video!!!
@blackpenredpen7 жыл бұрын
yay!! Thank you!
@tomatrix75254 жыл бұрын
Your reslly entertaining and it is very interesting. I love your out of the box thinking to manipulate things to make them work!,,
@rakshithgowda16067 жыл бұрын
And pretend nothing happened!?? Great lines
@gregoriousmaths2664 жыл бұрын
YAY I got this correct Imma do a video on how I did it and then compare it with your method. This took me ages btw
@disgruntledtoons2 жыл бұрын
Brute force is taking Taylor's expansion of the square root of the tangent, and integrating *that*.
@factified98922 жыл бұрын
you are seriously the best maths teacher!
@TheYoshi4637 жыл бұрын
sqrt(-1) just love your videos! I'm gonna start studying math very soon and your videos really hype me for it^^
@blackpenredpen7 жыл бұрын
THANK YOU!!! I AM VERY HAPPY TO HEAR THIS!!
@agfd56597 жыл бұрын
Your pun made me cringe. I hope you're happy! :D
@mrocto3293 жыл бұрын
@@blackpenredpen 4 years later you are still inspiring people. I'm only 14 right now, so don't have any solid plans for uni etc. (other than studying CS as I like programming) but now you got me interested in maths! I've been spending my afternoons just trying to learn maths for the past few weeks, and it's been really fun so far!
@jagirsingh23943 жыл бұрын
It feels nice that i solved it all by myself for the most part. I have some amazing teachers. Can't thank them enough
@williamwen71907 жыл бұрын
If you plug in 0.5 for the integral function, then (sqrt(tan 0.5)+sqrt(cot 0.5))/sqrt(2)= 1.4793, but arctanh(1.4793) is undefined. The range of (sqrt(tan x)+sqrt(cot x)/sqrt(2)is alway greater than 1, which makes arctanh(sqrt(tan x)+sqrt(cot x)/sqrt(2)) always undefined for this integral function.
@DougCube7 жыл бұрын
undefined or complex, but either way I think you are right -- see my comments
@williamwen71907 жыл бұрын
DougCube But integral from 0.2 to 0.5 of sqrt(tanx) is defined and real from the graph of sqrt(tanx). And all the result of this integral function is complex or undefined.
@Jessica-gy4qo5 жыл бұрын
Thank youuuu❤, greetings from 🇨🇴
@blackpenredpen5 жыл бұрын
Thank you! :)
@kathysaurio Жыл бұрын
I always understand your calculus explanations. Thank you.
@Quantris5 жыл бұрын
One rather interesting thing about that expression is that (if we take C = 0) we'll generally get a complex number out of it. The imaginary part is always the same though. I think you get a nice expression if you introduce complex numbers (starting by factoring (u^4 + 1) into (u^2 +- i). But it seems non-obvious that 1) the manipulations I did after that are totally ok, since I kind of ignore principle value etc... and 2) how to rigouously show this is actually equal to the answer found with real math. Writing R = (1 + i) / sqrt(2) and u = sqrt(tan(x)) (and Re == real part) then I eventually got that Re[2R*arctan(Ru)] is an antiderivative of sqrt(tan(x)) w.r.t. x Writing out the def. of (complex) arctan => Re[(1/R) Log [(R - u) / (R + u)]] is an antiderivative. Numerically checking for some random values I find this does give the same values (up to a constant) as your solution. Though I did assume that tan(x) is non-negative here (that is how I ended up with "real part" in there).
@דיןה-ל6ז5 жыл бұрын
3:44 You may divide by zero here! Why doesn't it matter?
@rahimeozsoy42444 жыл бұрын
He is a little amateur
@vcvartak71113 жыл бұрын
There is simple method (I Feel) put x=(pi/4-t) dx=-dt and integral become sqrt(1-tan(t))/1+tan(t)) after rationalising numerator we get (1-tan(t)/sqrt(1-tan(sq)t) which is (cos(t)-sin(t))/sqrt(cos(sq)t-sin(sq(t)) now split the integrals. Cos(t)/sqrt(1-2sin(sq)t) other integral is sin(t)/sqrt(2cos(sq)t-1) by sqrt(2) manipulation we get u/sqrt(1-u(sq)) other u/sqrt(u(sq)-1) both forms are familiar having formulae
@andrewfischer-garbutt2867 Жыл бұрын
I did the integral in a slightly different way. I ended up with (sqrt(2)/4) * log(abs((1/2 + (sqrt(tan(x)) - sqrt(2)/2).^2) / (1/2 + (sqrt(tan(x)) + sqrt(2)/2).^2))) + (sqrt(2)/2) * atan(sqrt(2*tan(x)) + 1) + (sqrt(2)/2) * atan(sqrt(2*tan(x)) - 1). I also let u = sqrt(tan(x)) but in of multiplying through by 1/u^2 I added and subtracted 2u^2 from the denominator and then factoring the result using difference of squares. Once I had it in a factored form, I used partial fractions.
@metalmathprofessor14677 жыл бұрын
Riveting :) Bravo on a brilliant solution! I think I could explain that to someone else now!
@CasualGraph7 жыл бұрын
Man, so many colors! If you wrote blackpenredpen in that empty space and taken a picture, you'd have a pretty good channel banner.
@sauravthegreat5 жыл бұрын
Fantastic video. Very well explained. Thx
@andeleo71585 жыл бұрын
At 9:59, I understand why you add the second fraction in, but doesn't the second fraction need the same denominator as the first to make it equal to the fraction on the line above?
@franklinemix80482 жыл бұрын
Exactly the question i just asked him. That's a violation of fraction rules
@franklinemix80482 жыл бұрын
And to prove it. When those two fractions are added back they can't be added back... So the figure 2 that was split vanished.
@shantanudash52175 жыл бұрын
Very good explanation... Thanks a lot
@ngonotseg71910 ай бұрын
You are a brilliant Math teacher
@tgx35293 жыл бұрын
All depens on interval for x. If this integral is for x in (0.5;1) you can use sqrt(tg)=1/(sqrt (cotgx x) And use substitution y=sqrt(cotgx), than you have short solution
@bioengboi1374 жыл бұрын
Very symmetrical so much so with all those arctans and tan x's you could combine them except for that little h in the inverse hyperbolic tangent it stands for Hell in this integral bc you can't take tanh^-1(n) ||n|| > 1, ~|tan x| + |cot x| w/o screwing up the rest of it unless it's some kind of cubic solution with complex b coefficient ~ 1/3 ln (i) Point it seems so close to y = f(x); f^-1(y) = x, x could be 0-2π with no trouble you would run into complex numbers but they cancel themselves out ish
@mihirjoshi43783 жыл бұрын
the sheer joy with which my man just said: "I also have a purple pen :)"
@javierarmandopalacios7862 жыл бұрын
The math is a universal languaje. I'm peruvian, but i can see this video and understand it!🤩
@ernestschoenmakers81817 жыл бұрын
This integral can also be done by partial fractions decomposition. 1+u^4 can be factorized into (1+sqrt(2)u+u^2)(1-sqrt(2)u+u^2).
@Vaibhav-ye6to10 ай бұрын
prolly the first time im actually being happy after a maths answer
@akshaykishoredesai20175 жыл бұрын
Love your videos sir, you make very complex calculus part easy 😃😃
@hectorbenjaminurreacifuent61965 жыл бұрын
converges or diverges the improper integral from 3 to infinity of (e / x) ^ x
@megauser85124 жыл бұрын
The improper integral from 3 to infinity of (e/x)^x dx: (e/x)^x = (e^x)/(x^x) = (e^x)/(e^ln(x))^x = (e^x)/e^(x*ln(x)) = (e^x)*(e^x)^(-ln(x)) u = e^x, x = ln(u), du = e^x dx, so integral from 3 to infinity of (e^x)*(e^x)^(-ln(x)) dx becomes integral from e^3 to infinity of u^(-ln(ln(u))) du which converges since: f(u) = u^(-ln(ln(u))), so f(e^3) = (e^3)^(-ln(ln(e^3))) = (e^3)^(-ln(3)) = e^(-3*ln(3)) f(e^3) = e^(ln(3))^(-3) = 3^(-3) = 1/27, and f(infinity) = (infinity)^(-ln(ln(infinity))) = (infinity)^(-infinity) = 0.
@nasaxd18624 жыл бұрын
Purple pen = turbo
@TheMauror227 жыл бұрын
Finally! Loved the video! Is great! You could do the same integral for the 100k, but now you do it the hard way! (The one with partial fractions and with the factorization of u^4+1, and with the natural log result!)
@blackpenredpen7 жыл бұрын
Mauro Castañeda I would need another white board for that tho. Lol
@cardflopper33073 жыл бұрын
I couldn't do this integral without u
@bbxrhythm11274 жыл бұрын
3:50 take t = u^2
@PunmasterSTP Жыл бұрын
I think that the most monumental achievement humanity could ever hope to accomplish would be to find an intuitive understanding of how to go directly from the integrand to the antiderivative in one step...
@ernestdecsi59135 жыл бұрын
Nagyon jó és elegáns megoldás !
@RitaSahay-g9p11 ай бұрын
3:34 split it in the form of u^2+1 and u^2-1 to save the trouble..
@CrypticalGaming3 жыл бұрын
You could've used another formula/ method for integrating the 1/(t^2 -2) just by using : integral of 1/(x^2-a^2) = (1/2a)*( ln( |x-a|/|x+a| ) . that would have been more easy and intiutive than hyperbolic inverse function.(just saying) BTW very nice explanation sir. Great content. You're a wonderful teacher. PEACE
@ny6u4 жыл бұрын
Every integral tackled for the first time is a journey into the unknown...
@benjaminmoller39927 жыл бұрын
you are awesome men this appear on my exam from yesterday i lov u 💕
@imme3024 Жыл бұрын
If we use fractional decomposition to integrate 1/(x^2-a^2) , we'll get 1/(x^2-a^2) = [1/(2*a)] * [ 1/(x-a) - 1/(x+a) ] and therefore its integral is equal to [1/(2*sqrt(2))] * ln( |(t-sqrt(2)) /(t+sqrt(2))| ), by replacing "a" with sqrt(2). That's not the same as (1/a) * tanh-1 (x/a)
@josebarona2717 жыл бұрын
Best birthday gift , thanks
@tanmayagarwal49815 жыл бұрын
Got to see this question first time on my exam today... carrying weightage of 6marks.. was totally fucked up😑
@kava22143 жыл бұрын
Which exam?
@HaitaoWang2684 жыл бұрын
Yesss! This question was on my calc 2 final exam and I got it right!
@jonathanvukaj21987 жыл бұрын
He didn't reupload this video, we all just have a déjà-vu at the exact same moment.
@blackpenredpen7 жыл бұрын
Sorry for the reupload. I actually had a mistake on the integral of 1/(x^2-a^2) in the previous video. I will make up to you guys by checking my answer by differentiation! That video will be done soon!
@shikshya2594 Жыл бұрын
4:44 Why can't I just use the 1 / x^2 + a ^2 = 1/a tan^-1(x/a) there since 1/u^2 is (1/u)^2?
@2008abhik3 жыл бұрын
Quite a popular integral in jee exams in the 80s where u had maths 200 marks ,40 questions carried 5 marks each and attempt all questions
@jamescollier310 ай бұрын
yeah. I had some sort of flashback
@ethanbartiromo28885 жыл бұрын
Couldn’t you have just done tan inverse with the original u equation after you divided the fraction by u^2, or does it only work with one variable and one constant term?
@alejrandom65922 жыл бұрын
No, cuz then you wouldn't have the +1/u² term nor the -1/u². You need them both to cancel each other.
@dekz09114 жыл бұрын
Mind blown after watching this after I have forgotten mathematics...gotta study again
@brucefrizzell42215 жыл бұрын
As my Cal 3 Professor used to say " What could be simpler ."
@bobbackstrom40357 жыл бұрын
Fantastic sqrt(tan(x)) explanation. Love your integrals. Then I went to Wolframalpha.com and asked for "indefinite integral((tan(x))^(1/20))" and it WORKED. The 40 lines of output are incredible, starting with: cos(pi/4)arctan(csc(pi/40)tan^(1/20)(x)-cos(pi/40))) - Check it out!
@megauser85124 жыл бұрын
Actually, it's cos(pi/40) * arctan(csc(pi/40) * (tan^(1/20)(x) - cos(pi/40))) -. You forgot the 0 in the 1st cosine term.
@jacobschaumann2 жыл бұрын
14:27 couldn't you do t=sqrt(2)secθ? I think that would be easier than hyperbolic tangent things.
@div_072 жыл бұрын
The hardest part about this is to remember the +C.
@pankajkumarpandey66583 жыл бұрын
I solved this problem long back. ie in 1982 when I was in class 12th.