Thank you for telling me it, you don't imagine how much I smile when I see comments like yours! Congratulations! 💪💪
@maicariuionel66673 жыл бұрын
@@IntegralsForYou thank you again,and i hope you have a great day! ❤✌
@IntegralsForYou3 жыл бұрын
@Maicariu Ionel Thank you! ❤️
@ishank25777 жыл бұрын
Bro can you add voice explaination
@red-sv2qf10 ай бұрын
2:25 where did u get the integral of x from :/?
@IntegralsForYou10 ай бұрын
Hi! It comes from simplifying (x+1)(x-1)/(x+1) to (x-1). Here you have the details: Integral of x^2/(x+1) dx = = Integral of (x+1)(x-1)/(x+1) dx + Integral of 1/(x+1) dx = = Integral of (x+1)(x-1)/(x+1) dx + Integral of 1/(x+1) dx = = Integral of (x-1) dx + Integral of 1/(x+1) dx = = Integral of x dx - Integral of 1 dx + Integral of 1/(x+1) dx = = x^2/2 - x + ln|x+1| Hope it helped! 💪
@red-sv2qf10 ай бұрын
thank you so much @@IntegralsForYou
@IntegralsForYou10 ай бұрын
@@red-sv2qf My pleasure! ❤
@俞豆陽3 жыл бұрын
Thank you , you are the best
@IntegralsForYou3 жыл бұрын
Thank you! 😊
@yashvardhansharma49453 жыл бұрын
Great video!!!! thanks for this!!!!!
@IntegralsForYou3 жыл бұрын
My pleasure! 😎
@pradyushkumarjena72653 жыл бұрын
Thanks for solving it . Why you don't speak in your lecture?
@IntegralsForYou3 жыл бұрын
Hi, I know that it would be easier for you if I talked but I prefer to let you think why am I doing each step and if you don't understand it you can ask me in a comment. In my opinion, it is the best way to practice integration 😊
@pradyushkumarjena72653 жыл бұрын
OK sir
@amandeepbaghiana45103 жыл бұрын
@@IntegralsForYou It would also help if you just said why you were doing the things you're doing, on my end if I am confused I can simply pause the video and contemplate the problem.
@miguelblx18.6 ай бұрын
Gracias pa te amo
@IntegralsForYou6 ай бұрын
Y yo te amo más si me ayudas a hacer crecer mi nuevo canal sobre derivadas jeje... www.youtube.com/@DerivativesForYou Gracias! ❤❤
@godofgamers38844 жыл бұрын
I’m sorry but how are we supposed to truly understand if you’re just writing without explaining anything?
@IntegralsForYou4 жыл бұрын
Hi, I know that it would be easier for you if I talked but I prefer to let you think why am I doing each step and if you don't understand it you can ask me in a comment. In my opinion, it is the best way to practice integration 😉
@reaj34048 жыл бұрын
can you explain what you did at 1:16. I didn't quite understand however other than that nice job thank you.
@IntegralsForYou8 жыл бұрын
Hi! I am doing a polynom division. I think this video will help you: kzbin.info/www/bejne/o37akJqVedh5es0
@juliocastellanos22576 жыл бұрын
Nice, gracias!
@IntegralsForYou6 жыл бұрын
De nada! Un saludo! ;-D
@mahatnicolas86124 жыл бұрын
Thank men
@IntegralsForYou4 жыл бұрын
You're welcome! 😊👍
@isaacnavarro46146 жыл бұрын
thank you
@IntegralsForYou6 жыл бұрын
You're welcome! ;-D
@aziminamdar52713 жыл бұрын
By substituting X=e^u-1 Problem becomes less complicated with exponential component with an algebraic component . We could simply use UV rule Am I right ?? Plz let me know
@IntegralsForYou3 жыл бұрын
Hi! Yes, you can use that trick: Integral of x*ln(x+1) dx = Substitution: x = e^t - 1 ==> x+1=e^t ==> ln(x+1) = t dx = (e^t)dt = Integral of (e^t - 1)*ln(e^t - 1 + 1) (e^t)dt = = Integral of (e^t - 1)*ln(e^t) (e^t)dt = = Integral of (e^t - 1)*t (e^t)dt = = Integral of t*(e^2t - e^t) dt = Parts: Integral of u dv = uv - Integral of v du u = t ==> du = dt dv = (e^2t - e^t)dt ==> v = (1/2)e^(2t) - e^t = t*((1/2)e^(2t)-e^t) - Integral of ( (1/2)e^2t - e^t ) dt = = t*(e^t)( (1/2)e^(t)-1 ) - ( (1/2)(1/2)e^2t - e^t ) = = t*(e^t)( (1/2)e^(t)-1 ) - (e^t)((1/4)e^t - 1) = = ln(x+1)(x+1)*( (1/2)(x+1) - 1 ) - (x+1)*( (1/4)(x+1) - 1 ) = = ln(x+1)(x+1)*( (1/2)x + 1/2 - 1 ) - (x+1)*( (1/4)x + 1/4 - 1 ) = = ln(x+1)(x+1)*( (1/2)x - 1/2 ) - (x+1)*( (1/4)x - 3/4 ) = = (1/2)ln(x+1)(x+1)(x-1) - (1/4)(x+1)*(x-3) = = (1/2)(x^2-1)ln(x+1) - (1/4)(x^2-3x+x-3) = = (1/2)(x^2-1)ln(x+1) - (1/4)(x^2-2x-3) = = (1/2)(x^2-1)ln(x+1) - (1/4)(x^2-2x-3) = = (x^2/2)ln(x+1) - (1/2)ln(x+1) - (1/4)x^2 + (1/2)x + 3/4 + C = = (x^2/2)ln(x+1) - (1/2)ln(x+1) - (1/4)x^2 + (1/2)x + C' (where C'=3/4 + C is also a constant) ;-D
@manhba30505 жыл бұрын
Integral of x.ln^2(x+1)dx = ??? 🙏🙏🙏✏📚📖
@IntegralsForYou5 жыл бұрын
Hi! Here you have the solution: Integral of x*ln^2(x+1) dx = Substitution: t = x+1 ==> t-1=x dt = dx = Integral of (t-1)ln^2(t) dt = Parts: Integral of u dv = uv - Integral of v du u = ln^2(t) ==> du = 2*ln(t)/t dt dv = (t-1)dt ==> v = t^2/2 - t = ln^2(t)*(t^2/2 - t) - Integral of (t^2/2 - t)2*ln(t)/t dt = = ln^2(t)*(t^2/2 - t) - Integral of (t - 2)ln(t) dt = Parts: Integral of u dv = uv - Integral of v du u = ln(t) ==> du = 1/t dt dv = (t-2)dt ==> v = t^2/2 - 2t = ln^2(t)*(t^2/2 - t) - [ ln(t)(t^2/2 - 2t) - Integral of (t^2/2 - 2t)(1/t) dt ] = = ln^2(t)*(t^2/2 - t) - ln(t)(t^2/2 - 2t) + Integral of (t/2 - 2) dt = = ln^2(t)*(t^2/2 - t) - ln(t)(t^2/2 - 2t) + (t^2/4 - 2t) = = (t/4)[ ln^2(t)*(2t - 4) - ln(t)(2t - 8) + (t - 8) ] = = ((x+1)/4)[ ln^2(x+1)*(2(x+1) - 4) - ln(x+1)(2(x+1) - 8) + (x+1-8) ] = = ((x+1)/4)[ (2x-2)ln^2(x+1) - (2x-6)ln(x+1) + x - 7 ] + C ;-D
@ahmedalhisaie76987 жыл бұрын
mate, you've lost me at 1:11 can't get anything after that. my question almost the same only I have x to the power 3
@IntegralsForYou7 жыл бұрын
Hi Ahdmed Alhisaie, why do you have x^3? From 1:11 I am doing a polynomial division
@IntegralsForYou7 жыл бұрын
For the integral of x^2/x+1 dx you can also do the next substitution: Integral of x^2/x+1 dx = Substitution: t=x+1 ==> t-1=x dt=dx = Integral of (t-1)^2/t dt = = Integral of (t^2 - 2t + 1)/t dt = = Integral of (t^2/t - 2t/t + 1/t) dt = = Integral of (t - 2 + 1/t) dt = = t^2/2 - 2t + ln|t| = = (x+1)^2/2 - 2(x+1) + ln|x+1|
@ahmedalhisaie76987 жыл бұрын
Integrals ForYou no it just the question that I have, is little bit different, however yes I didn't understand from this time 1:11 I'm right now trying to learn polynomial division it seems little bit complicated
@IntegralsForYou7 жыл бұрын
Good luck with polynomial division, it seems complicated but from the third example you will see it is always the same :D I have some integrals in this playlist where I do polynomial division if you want: kzbin.info/aero/PLpfQkODxXi49YODSGByJH2O7dVRgzPKe2
@ahmedalhisaie76987 жыл бұрын
mate , integrate this one please . x^2 ln(1+x)dx
@shibani1876 жыл бұрын
Hi sir .. what about xlog(1+2x)...After integrating by parts .. I stopped at x^2/1+2x... Plz help
@IntegralsForYou6 жыл бұрын
Integral of x*ln(1+2x) dx = = Integral of ln(1+2x) x dx = Parts: Integral of u dv = uv - Integral of v du u = ln(1+2x) ==> du = 2/(1+2x) dx dv = x dx ==> v = x^2/2 = ln(1+2x)*(x^2/2) - Integral of (x^2/2)(2/(1+2x)) dx = = (x^2/2)ln(1+2x) - Integral of x^2/(1+2x) dx = Polynomial division: D = dq + r x^2 |__2x+1 -x^2 -(1/2)x ------- ----------------- (1/2)x - 1/4 / -(1/2)x +(1/2)x + 1/4 ----------------------- / 1/4 x^2 = (1+2x)( (1/2)x - 1/4 ) + 1/4 = (1/4)( (1+2x)(2x-1) + 1) ==> x^2/(1+2x) = = (1/4)( (1+2x)(2x-1) + 1)/(1+2x) = = (1/4)( (1+2x)(2x-1)/(1+2x) + 1/(1+2x) )= = (1/4)( (2x-1) + 1/(1+2x) )= = (1/4)( 2x - 1 + 1/(1+2x) ) ==> = (x^2/2)ln(1+2x) - Integral of x^2/(1+2x) dx = = (x^2/2)ln(1+2x) - Integral of (1/4)( 2x - 1 + 1/(1+2x) ) dx = = (x^2/2)ln(1+2x) - (1/4)Integral of ( 2x - 1 + 1/(1+2x) ) dx = = (x^2/2)ln(1+2x) - (1/4)[ Integral of 2x dx - Integral of dx + Integral of 1/(1+2x)) dx ] = = (x^2/2)ln(1+2x) - (1/4)[ 2*Integral of dx - Integral of dx + (1/2)*Integral of 2/(1+2x)) dx ] = = (x^2/2)ln(1+2x) - (1/4)[ 2*x^2/2 - 1 + (1/2)ln|(1+2x)| ] = = (x^2/2)ln(1+2x) - (1/4)[ x^2 - 1 - (1/2)ln|(1+2x)| ] = = (x^2/2)ln(1+2x) - x^2/4 + 1/4 - (1/8)ln|(1+2x)| = = (1/8)[ (4x^2)ln(1+2x) - 2x^2 + 2 - ln|(1+2x)| ] = = (1/8)[ (4x^2 - 1)ln(1+2x) - 2x^2 + 2 ] + C
@deajapon4 жыл бұрын
dv should be (x dx) and not just x
@IntegralsForYou4 жыл бұрын
Hi, Felicia! I agree, I forgot to write it...
@summy27805 ай бұрын
Bro, you missed some thing
@IntegralsForYou5 ай бұрын
The sound? 🙃
@summy27805 ай бұрын
@@IntegralsForYou If I was right, it is 3/4
@IntegralsForYou5 ай бұрын
@@summy2780 Hi! I need more details... could you tell me your complete solution or how did you get there? Thanks!
@fatimazohra48937 жыл бұрын
pleas i need this integrale ln(x)/(1+x^2) from 0 to +infinity
@romario213 жыл бұрын
Use bigger font !!!Use a sharp Pen !!!
@IntegralsForYou3 жыл бұрын
Hi! Newer videos have better quality, take a look 😉
@tohzhenhong51836 жыл бұрын
change pen pls and ur 1 is like the same as ur other signs , totally cannot see what u write
@nicolasramos41073 жыл бұрын
Para mi esta mal
@IntegralsForYou3 жыл бұрын
Hola, Nicolás, por qué lo dices? Igual simplemente tienes una solución tan válida como la mía... 😉
@joshuajumper88987 жыл бұрын
This answer is wrong. -ln(x+1) / 2 is incorrect it should be +3/4 + C at the end. The error was made when he factored his x squared and gave his 1 a whole new body (nun/denomin) instead of cancelling it.
@IntegralsForYou7 жыл бұрын
Hi Joshua! I don't understand how did you get your +3/4. Can you please tell me how did you do it? However, I have reviewed and I think my answer is correct....
@duffyhasswag64537 жыл бұрын
Problem and neither of you can give me the right answer
@simonahalep28855 жыл бұрын
It doesn't matter Joshua The admin's answer is write that 3/4 you're talking about will go as the constant that you're saying c.
@enhace15anos.832 жыл бұрын
where the hell did you get 3/4?💀
@rnasrinisha24956 жыл бұрын
wrong answer
@IntegralsForYou6 жыл бұрын
Hi R Nasrinisha, I don't agree with you. Maybe you have a different answer but equivalent to mine. However, you should say the right answer if you think mine is wrong...
@AppleUploader4 жыл бұрын
Thanks for explaining it. Isn’t that the whole point of trying to teach? Thumbs down.