(Method 2) Integral of 1/(x*sqrt(x^4-1)) (substitution)

  Рет қаралды 1,118

Integrals ForYou

Integrals ForYou

Күн бұрын

Пікірлер: 11
@IntegralsForYou
@IntegralsForYou 3 ай бұрын
New Integrals ForYou store for merch! 👕 integralsforyou.creator-spring.com 👕
@Melek_OK.
@Melek_OK. 3 ай бұрын
😍👏👏 excelente!!!!! 📓✌️
@IntegralsForYou
@IntegralsForYou 3 ай бұрын
@@Melek_OK. Ya me dirás si te gustan los diseños! Para cualquier sugerencia o comentario puedes enviarme un correo a integralsforyou@gmail.com 😉
@Melek_OK.
@Melek_OK. 3 ай бұрын
Madre mía, recuerdo este mismo ejercicio en mi examen y yo tipo 😵‍💫🥸🤣🤣🤣
@IntegralsForYou
@IntegralsForYou 3 ай бұрын
jaja es que a primera vista impresiona! Yo la he resuelto de dos modos: [Method 1] - Integral of 1/(x*sqrt(x^4-1)) - [u=1/sqrt(x^4-1)] - kzbin.info/www/bejne/g6PKY5yMituDsLs [Method 2] - Integral of 1/(x*sqrt(x^4-1)) - [u=x^2 & u=1/cos(t)] - kzbin.info/www/bejne/l4q8n6yEi8-ffsk
@--222---
@--222--- 3 ай бұрын
Hi Integrals I have been trying to solve this integral 13/x^3 - 125, I have been able to find the values for A,B,C however Im struggling to solve the integrals after that, specifically the one with the trinomal at the bottom. could you help me?
@IntegralsForYou
@IntegralsForYou 3 ай бұрын
Of course! Here you have the solution! It is the whole solution, if you want it from exactly what you asked, you can start from the section starting with "Complete squares for x^2+5x+25": 13/(x^3 -125) = 13/(x-5)(x^2+5x+25) = A/(x-5) + (Bx+C)/(x^2+5x+25) = = A(x^2+5x+25)/(x-5)(x^2+5x+25) + (Bx+C)(x-5)/(x^2+5x+25)(x-5) = = (Ax^2+5Ax+25A)/(x^3 -125) + (Bx^2+Cx-5Bx-5C)(x-5)/(x^3 -125) = = (Ax^2 + 5Ax + 25A + Bx^2 + Cx - 5Bx - 5C)/(x^3 -125) = = ( (A+B)x^2 + (5A+C-5B)x + (25A-5C) )/(x^3 -125) ==> 13/(x^3 -125) = ( (A+B)x^2 + (5A+C-5B)x + (25A-5C) )/(x^3 -125) 13 = (A+B)x^2 + (5A+C-5B)x + (25A-5C) 0x^2 +0x + 13 = (A+B)x^2 + (5A+C-5B)x + (25A-5C) ==> 0 = A + B ==> B = -A 0 = 5A + C - 5B ==> 0 = 5A + C - 5(-A) ==> 0 = 5A + C + 5A ==> C = -10A 13 = 25A - 5C ==> 13 = 25A - 5(-10A) ==> 13 = 25A + 50A ==> 13 = 75A ==> A = 13/75 ==> A = 13/75 B = -A = -13/75 C = -10A = -10(13/75) = -130/75 ==> 13/(x^3 -125) = (13/75)/(x-5) + ((-13/75)x - 130/75)/(x^2+5x+25) = (1/75)*[13/(x-5) - (13x-130)/(x^2+5x+25)] Integral of 13/(x^3 -125) dx = = Integral of (1/75)*[13/(x-5) - (13x-130)/(x^2+5x+25)] dx = = (1/75)*[ 13*Integral of 1/(x-5) dx - Integral of (13x-130)/(x^2+5x+25) dx ] = Derivative of x^2+5x+25 = 2x+5. Then: 13x - 130 = (13/2)*(2x+20) = (13/2)*(2x+5+15) = (1/75)*[ 13*Integral of 1/(x-5) dx - Integral of (13/2)*(2x+5+15)/(x^2+5x+25) dx ] = = (1/75)*[ 13*Integral of 1/(x-5) dx - (13/2)*( Integral of (2x+5)/(x^2+5x+25) dx + 15*Integral of 1/(x^2+5x+25) dx ) ] = = (13/75)*Integral of 1/(x-5) dx - (13/150)*Integral of (2x+5)/(x^2+5x+25) dx - (13/10)*Integral of 1/(x^2+5x+25) dx = = (13/75)*ln|x-5| - (13/150)*ln|x^2+5x+25| - (13/10)*Integral of 1/(x^2+5x+25) dx = Complete squares for x^2+5x+25: (x + 5/2)^2 = x^2 + 5x + 25/4 (x + 5/2)^2 + 75/4 = x^2 + 5x + 25/4 + 75/4 = x^2 +5x + 100/4 = x^2 +5x + 25 Now write x^2+5x+25 as 1 + (something)^2: x^2 + 5x + 25 = = 75/4 + (x + 5/2)^2 = = (75/4)[1 + (4/75)(x + 5/2)^2 ] = = (75/4)[1 + ((2/sqrt(75))x + (2/sqrt(75))(5/2))^2 ] = = (75/4)[1 + ((2/sqrt(75))x + 5/sqrt(75))^2 ] = = (75/4)[1 + ( (2x+5)/sqrt(75) )^2 ] = (13/75)*ln|x-5| - (13/150)*ln|x^2+5x+25| - (13/10)*Integral of 1/(x^2+5x+25) dx = = (13/75)*ln|x-5| - (13/150)*ln|x^2+5x+25| - (13/10)*Integral of 1/(75/4)[1 + ( (2x+5)/sqrt(75) )^2 ] dx = = (13/75)*ln|x-5| - (13/150)*ln|x^2+5x+25| - (13/10)*(4/75)*Integral of 1/[1 + ( (2x+5)/sqrt(75) )^2 ] dx = Substitution: u = (2x+5)/sqrt(75) du = 2/sqrt(75) dx ==> sqrt(75)/2 du = dx = (13/75)*ln|x-5| - (13/150)*ln|x^2+5x+25| - (13/10)*(4/75)*Integral of 1/(1+u^2) sqrt(75)/2 du = = (13/75)*ln|x-5| - (13/150)*ln|x^2+5x+25| - (13/10)*(4/75)*(sqrt(75)/2)*Integral of 1/(1+u^2) du = = (13/75)*ln|x-5| - (13/150)*ln|x^2+5x+25| - (13/25sqrt(3))*Integral of 1/(1+u^2) du = = (13/75)*ln|x-5| - (13/150)*ln|x^2+5x+25| - (13/25sqrt(3))*arctan(u) = = (13/75)*ln|x-5| - (13/150)*ln|x^2+5x+25| - (13/25sqrt(3))*arctan((2x+5)/sqrt(75)) + C Hope it helped! ❤
@paulogabriel1251
@paulogabriel1251 3 ай бұрын
That was really good. I did it straight, replacing the X squared with the secant. I follow your videos weekly and this one was really more challenging. Post some "challenge" videos for the more advanced ones too hahaha (sorry for my bad English)
@IntegralsForYou
@IntegralsForYou 3 ай бұрын
Your English is good, Paulo! Thanks for your comment... well, your comments! I have seen you around all these years! In general I do integrals people ask me but if you want some difficult ones you will find them in this playlist: kzbin.info/aero/PLpfQkODxXi4_3E8mGTTnulkkvL2LBbOFb But something tells me that you already knew about this playlist... 🤣
@gustavoromero7556
@gustavoromero7556 3 ай бұрын
Ñ​@@IntegralsForYou
@IntegralsForYou
@IntegralsForYou 3 ай бұрын
Ç 🤭@@gustavoromero7556
U-Substitution 5-sample video
23:17
Prime Newtons
Рет қаралды 41 М.
Integral of 5x^2/(x^2+4)(x^2+9) (partial fraction decomposition)
7:45
Integrals ForYou
Рет қаралды 1,2 М.
Что-что Мурсдей говорит? 💭 #симбочка #симба #мурсдей
00:19
Enceinte et en Bazard: Les Chroniques du Nettoyage ! 🚽✨
00:21
Two More French
Рет қаралды 42 МЛН
Гениальное изобретение из обычного стаканчика!
00:31
Лютая физика | Олимпиадная физика
Рет қаралды 4,8 МЛН
Integral of sqrt(1+x^2)/sqrt(1-x^4)
2:07
Integrals ForYou
Рет қаралды 607
Integration durch SUBSTITUTION - Integral lösen
10:05
MathemaTrick
Рет қаралды 205 М.
integration by parts, DI method, VERY EASY
16:59
blackpenredpen
Рет қаралды 1,5 МЛН
integral of sqrt of tanx
25:46
Prime Newtons
Рет қаралды 40 М.
how Laplace solved the Gaussian integral
15:01
blackpenredpen
Рет қаралды 764 М.
Feynman's Technique of Integration
10:02
blackpenredpen
Рет қаралды 596 М.
What is Jacobian? | The right way of thinking derivatives and integrals
27:14
U Substitution // Calculus through Minecraft
9:57
Gragbuilds
Рет қаралды 2,1 М.