Link to the math blog: www.math3ma.com/blog/dominated-convergence-theorem Dominated Convergence Theorem: kzbin.info/www/bejne/o4ayk3iQf5p_iNk sin(x)/x: kzbin.info/www/bejne/gWGWlaCZpdV0aq8
The mighty Dominated Convergence Theorem strikes again, awesome! :-)
@guitar_jero3 жыл бұрын
Better than just getting the answer and say a wizard did it :)
@route66math773 жыл бұрын
@@guitar_jero As I always say, "It's not magic, it's logic!" :-D
@insouciantFox3 жыл бұрын
When guessing, guess π. When in doubt, Euler did it.
@OuroborosVengeance3 жыл бұрын
This is pure poetry
@arvindsrinivasan4243 жыл бұрын
If you decide to take the “hard” route and integrate first, the integral gives pi*n*(1-e^-(1/n)) [I integrated this using Residue Theorem and recognizing that the real part of (e^(i*x/n)-1)/(i*x/n) is equal to sin(x/n)/(x/n) ] Taking the limit as it goes to infinity requires taking the limit of an indeterminate argument, but is quite easy to show it gives pi
@charlesbromberick42473 жыл бұрын
that´s what I would have tried
@elephantdinosaur22843 жыл бұрын
Nice solution Arvind! I tried my luck with n*exp(iz/n)/z(z^2+1) directly but had issues doing the small loop around the origin because of the pole there. Your trick circumvents the issue nicely. Regarding the final limit I like to expand exp(-1/n) = 1 - 1/n + O(1/n^2) and then just substituting in. Saves all the messiness with l'hopitals rule.
@violintegral2 жыл бұрын
You could also use Feynman's trick to evaluate this integral as an alternative to Residue Theorem
@blightedcrowmain82363 жыл бұрын
i like how he says ty for watching at the beggining
@pbj41843 жыл бұрын
Now that you say it, only Dr. Peyam does that 🤔 I never noticed it but now I realized I always know it's a Dr. Peyam video whenever I hear those words. 11/10 on branding, Dr. Peyam!
@thedoublehelix56613 жыл бұрын
7:25 lmaoo
@byronvega82983 жыл бұрын
Ah yes, the fundamental theorem of engineering
@AnkitSharma-ef7md3 жыл бұрын
Dr. Peyam is high on mathematics. I loved the approach. Coolest professor I ever have seen. Wished you were my post graduate professor.. 😁😁😁😁😁
@tejpalsinghantal89873 жыл бұрын
Mandatory comment to help with the algorithm
@umerfarooq48313 жыл бұрын
Great video informative , interesting and nonetheless entertaining especially the "some kind of people"
@LatestBinge3 жыл бұрын
Love your videos! I'm an 8th grader but thanks to you I start to understand and love complex math!
@danielaorozco99953 жыл бұрын
feels like magic :0 thanks a lot doctor!
@joelschwed71773 жыл бұрын
There is no limit to your wisdom good sir...
@yogeshwagh28493 жыл бұрын
Awesome 🙌🏻
@TheAustrianAnimations873 жыл бұрын
This video got randomly recommended to me. Nice, I've learned something new.
@RalphDratman3 жыл бұрын
I enjoy mathematics but this is one of those moments when I become very aware that I could never become a mathematician. I did become an engineer (of computer-related hardware and software), but unofficially. Now that I'm retired, I wonder how I ever managed to do any of that!
@shivaudaiyar25563 жыл бұрын
Thanks for such a great content with love from India
@rounaksinha53093 жыл бұрын
Happy mathematics day Perfect integral for Mathematics day
@IoT_3 жыл бұрын
7:26 I'm an engineer and I don't understand why you didn't allow to put equal sign between sine function and x on your math channel 🌝
@123ucr3 жыл бұрын
If I were a math professor like you, I would put this problem in a Calculus 2 Final exam or an AP Calculus BC exam. Heck, it might even be an extra credit problem. Why? For starters, because you would have to probably use L'Hospital's rule and you definitely need your trigonometry skills to solve this problem. Second of all, this problem's solution can be messy like a chili cheeseburger and takes a lot of time to solve (at least 9-10 minutes). A typical Calculus 2 problem takes like 5-7 minutes to solve. Third and finally, this is one of the hardest Calculus 2 problems that I have seen in my life.
@UltraMaXAtAXX3 жыл бұрын
Well, except a calculus II student wouldn't really know about the DCT.
@123ucr3 жыл бұрын
@@UltraMaXAtAXX --- I guess it looks like a Calculus 2 problem. That is why I would say it should be an extra credit problem on a Calculus 2 final. Is it possible for a Calculus 2 student to solve this problem? Short answer, yes. But, it is difficult for a Calculus 2 student to solve? Short answer, also yes. In reality, it is actually an advanced calculus or a real analysis problem or at least an Honors Calculus 2 problem.
@Chariotuber3 жыл бұрын
great video as always dr peyam! this really brings me back to when I took a mathematical physics class, which basically ended up being a class on functional analysis. good times lol
@comingshoon27173 жыл бұрын
gracias Doctor Peyam... ahora ya sabemos que los límites pueden ingresar dentro de una integral sin problemas jejej ... saludos desde 🇨🇱🇨🇱
@deadfish37893 жыл бұрын
You did this proof entirely backwards, but I liked it
@deadfish37893 жыл бұрын
Also I knew you could swap it if f_n-->f uniformly, but I'm assuming this is a weaker condition, and therefore applicable in more circumstances
@JSSTyger3 жыл бұрын
Dr Peyam is like that midnight snack while the wife is sleeping.
@vishalmishra30463 жыл бұрын
Simply change integration range from a to b and you get the result | atan(b) - atan(a). Now replace a and b with ∞ and -∞ to get π/2 - (-π/2) = π. Simple.
@drpeyam3 жыл бұрын
You’re completely missing the point of the video, this is precisely how you shouldn’t evaluate the integral
@vishalmishra30463 жыл бұрын
@@drpeyam For a moment let's assume no specific value of a and b except that both are real and a < b. Is there any combination of (a,b) for which the value of the integral is not ( atan(b) - atan(a) ) ? Given no exceptions, the value of the integral remains accurate for all combinations of such a constrained pair (a, b) including when -a and b are extremely large (and approaching infinity). This is clearly a more generalized solution that is also applicable to the specific case of (a, b) -> (-∞, ∞) in the video. Right ?
@drpeyam3 жыл бұрын
Again, not the point of the video, there are some integrals for which you cannot simply pass to the limit like n times indicator of (0,1/n). The point is not the (a,b) values but whether you can simply put the limit inside the integral
@toby62253 жыл бұрын
Dr. Peyam: uses Dominated Convergence Theorem Engineers: we don't do that here
@Frandahab3 жыл бұрын
Physicist here, we don't do that either xD
@lucho28683 жыл бұрын
9:42
@rounaksinha53093 жыл бұрын
Happy National Mathematics day to everyone
@jamesbentonticer47063 жыл бұрын
Is it just on India? Or is it national math day in usa as well?
@rounaksinha53093 жыл бұрын
@@jamesbentonticer4706Hii! James it is just India. IN USA and all over the world Math day is celebrated on 14 March and I have also read somewhere that another Math day or same kinda stuff is observed on 15 October in USA
@jamesbentonticer47063 жыл бұрын
@@rounaksinha5309 okay thanks for the info. I thought I'd make sure before I went and said happy math day to everyone lol
@frozenmoon9983 жыл бұрын
If there is a Peyam, there is a way!
@adam_elm_56803 жыл бұрын
im happy when I get a notif of a new video!
@mathjitsuteacher3 жыл бұрын
Hi Peyam, great video as always! There is a little mistake. The inequality -x
@drpeyam3 жыл бұрын
It is true actually. sin(-pi/2) = -1 which is between -pi/2 and pi/2
@mathjitsuteacher3 жыл бұрын
@@drpeyam I believe you wanted to use sin(x)
@robertgerbicz3 жыл бұрын
You also made a mistake, in the video -x
@drpeyam3 жыл бұрын
Yeah I meant to say for positive x. In any case doesn’t matter since we’re taking absolute values
@jiteshsingh34733 жыл бұрын
Make video on value of evolution of 'e'
@strmandola54843 жыл бұрын
Please calculate integral 1/a + cos(X) !
@heliocentric17563 жыл бұрын
7:26 😂😁 What type of people are you referring to?
@gisopolis773 жыл бұрын
engineers
@nanangmuhammad20673 жыл бұрын
I like this trick. Really can we put limit inside integral?
@afrolichesmain7773 жыл бұрын
If the conditions that were shown are satisfied, you can swap the integral and limit signs. However, if you know that fn converges to f uniformly, you can also swap the limit and integral signs.
@ajiwibowo87363 жыл бұрын
Doc, sometimes I do innequalities of rational function involving absolute value in it with the number test on number line. If mathematician they wont do test like that right? They must be make it in some cases or so. How did you do if theres some innequalities like that doc? May you give us how is your mathematical method on solving that kind of problem?
@charlesbromberick42473 жыл бұрын
smart guy
@michaelz22703 жыл бұрын
You really dominated in that video.
@drpeyam3 жыл бұрын
LOL
@DELTASERPENT3 жыл бұрын
Great teaching Payamji. Have you written any books? Maths made easy!!!!
@drpeyam3 жыл бұрын
I should!!!
@레온하르트-r2p3 жыл бұрын
Lebesgue Integration Theory is very fun
@arturcostasteiner97353 жыл бұрын
Grreat! The dominated convergence theorem comes from measure theory, right?
@drpeyam3 жыл бұрын
Yes
@carlosgiovanardi81973 жыл бұрын
GREAT! Thanks for sharing. if possible, can you make videos on pde´s (parabolic, elliptic, hyperbolic) focusing on examples and their solutions? do you know the books of Budak, Samarsky and Tijonov?
@drpeyam3 жыл бұрын
There are two PDE playlists, check them out! Also nothing beats Evans’ textbook
@carlosgiovanardi81973 жыл бұрын
@@drpeyam thank you for your answer. i know your playlists. appreciate but this not what i am looking for. anyway, will go after your reference.
@dipayanguhapatra35803 жыл бұрын
Please integrate x square times of tan2x dx x^2.tan2x dx
@iabervon3 жыл бұрын
I say that, once you've proven what the derivative of sin x is, you can use l'Hopital's rule to find the limit of (sin x)/x if you forget what that value was. I think the first time I saw the derivation of the derivative of sin x, that limit wasn't called out as a lemma, and we just proved it again later when we needed it for something else.
@randomlife79353 жыл бұрын
According to blackpenredpen, using l'Hospital's rule on the limit of (sin x/x) is wrong because to determine the derivative of sin x, the limit of (sin x/x) is used, thus making the proof circular.
@iabervon3 жыл бұрын
@@randomlife7935 If you've gotten to the point of being able to use the derivative of sin x in arbitrary problems, there's no reason you shouldn't be able to use it for the limit of (sin x)/x. Of course, if you're allowed to use the derivative of sin x in arbitrary problems, you should just be able to use the fact that the limit is 1, because you proved it in class along the way, but you're not necessarily going to memorize and reference every true statement you've established. L'Hopital's rule is the easiest way to reprove it from the table of derivatives, if you need it for some other limit, like in this case. bprp's point is that, if the question on the test is "prove the limit of (sin x)/x", you can't use l'Hopital's rule, because the implied context of that question is that we haven't yet proven anything that we used that limit to prove. But if the question on the test is something new, you can use everything we've seen in class, and you don't have to use the original derivations if you need values you've forgotten.
@tesla53743 жыл бұрын
Waaaw nice
@yacinedjalil23553 жыл бұрын
Intégrale indéfinie comme lim quand x tend vers infini
@reogreggeen57383 жыл бұрын
How do we properly justify the application of the DCT to an improper Riemann integral to begin with? Is this not an issue?
@drpeyam3 жыл бұрын
Not really an issue, here we’re doing a Lebesgue integral actually, and the DCT applies to (improper) Lebesgue integrals
@reogreggeen57383 жыл бұрын
@@drpeyam Ah! Okay, thank you for the clarification on this - much appreciated. Have a good one!
@kanewilliams16533 жыл бұрын
wow I have never heard of the Dominated Convergence Theorem. Make a video on it!! :=)
@drpeyam3 жыл бұрын
Already done ✅
@kanewilliams16533 жыл бұрын
@@drpeyam Oops.. should have looked at your comments.. will watch it now!!
@zedisnotded81363 жыл бұрын
I don't understand why you would put the limit inside the integral when you need to know the limit of the inside function before anyway.
@ςγτε3 жыл бұрын
Like-dislike ratio is ∞ (infinite) now. Don't make it less, everyone !
@pbj41843 жыл бұрын
The domain of 1/x is R - {0}!! How dare you not respect that??? Division by 0 is meaningless!!!! Aaaaargh!!!!!!!!!!!!
@ςγτε3 жыл бұрын
@@pbj4184 That's why be positive with your limit ! 😉
@arvindsrinivasan4243 жыл бұрын
@@pbj4184 in certain contexts this may be true, however you can define 1/x on the Riemann sphere including infinites...
@pkvlogs50783 жыл бұрын
What if one adopts to clash this with fourier transformations or EULER integrals...???..☘🙂
@Kdd1603 жыл бұрын
That looked super horrible in the beginning but the answer was awesome 🤩🤩 pure math is my fav 😍❤
@bouch76433 жыл бұрын
You could use L'Hopital theorem too because when n goes to infinity, lim of f (n) = Sin (x/n) is equal to 0 and lim of g (n)= x/n is equal to 0. Then lim of f (n)/g (n) is equal to lim f'(n)/g'(n). I did not do thd calculus but this should works. Thoughts?
@drpeyam3 жыл бұрын
The main point is why you can put the limit inside the integral 🙃
@bouch76433 жыл бұрын
@@drpeyam it is obvious because integrals are additions technically.
@bouch76433 жыл бұрын
@@drpeyam sorry I just saw you mebtionned L'Hopital at 2:25. To burn steps in maths videos I use the youtube 10 fast forward feature a bit too much.
@Grassmpl3 жыл бұрын
You completely ignored the fact that the integrand has a singularity at x=0.
@drpeyam3 жыл бұрын
No it’s removable, no big deal
@Grassmpl3 жыл бұрын
@@drpeyam yeah but you didn't justify that when finding the upper bounded "g" function.
@yilmazkaraman2563 жыл бұрын
can i use dominated convergence theorem for changing differentiation and integration?
@drpeyam3 жыл бұрын
Actually yes, you write the derivative as a difference quotient and use the DCT. Check out my video on the dominated convergence theorem
@yilmazkaraman2563 жыл бұрын
@@drpeyam thanks. I will check your video
@JoshuaHernandez8a3 жыл бұрын
Engineering be like: this is an internal product of a Dirac distribution at 0 and an arctangent derivative
@FT0293 жыл бұрын
2:42, I'm wondering why you can't use L'hopital's rule to evaluate lim as y goes to 0 of sin y / y. great explanation of the dominated convergence theorem! reminds me a bit of another similar one, arzela's theorem
@shivaudaiyar25563 жыл бұрын
No we cannot use lopithals rule
@FT0293 жыл бұрын
@@shivaudaiyar2556 Why?
@shivaudaiyar25563 жыл бұрын
@@FT029 we cannot use lopithals rule it's explanation is in one of the vedios of blackpenredpen watch it
@shivaudaiyar25563 жыл бұрын
@@FT029 kzbin.info/www/bejne/o4vMgZevfd6IrKc
@shivaudaiyar25563 жыл бұрын
@@FT029 watch this video
@mohammadabdulla86012 жыл бұрын
for some kind of ppl you put equal but not on this channel 😂😂😂😂😂😂😂😂
@drpeyam2 жыл бұрын
?
@mohammadabdulla86012 жыл бұрын
@@drpeyam because some engineers use the approximation sinx = x for small x.I thought you are talking about this point.
@enzy80223 жыл бұрын
I can’t help it, but you look so much like Kyle from Nelk cool vids though