Integral with a limit

  Рет қаралды 23,954

Dr Peyam

Dr Peyam

Күн бұрын

Пікірлер: 119
@drpeyam
@drpeyam 3 жыл бұрын
Link to the math blog: www.math3ma.com/blog/dominated-convergence-theorem Dominated Convergence Theorem: kzbin.info/www/bejne/o4ayk3iQf5p_iNk sin(x)/x: kzbin.info/www/bejne/gWGWlaCZpdV0aq8
@carlosgiovanardi8197
@carlosgiovanardi8197 3 жыл бұрын
www.amazon.com/Equations-Mathematical-Physics-Samarskii-Tikhonov/dp/0080102263 www.amazon.com/Collection-Problems-Mathematical-Physics-Dover/dp/0486658066
@route66math77
@route66math77 3 жыл бұрын
The mighty Dominated Convergence Theorem strikes again, awesome! :-)
@guitar_jero
@guitar_jero 3 жыл бұрын
Better than just getting the answer and say a wizard did it :)
@route66math77
@route66math77 3 жыл бұрын
@@guitar_jero As I always say, "It's not magic, it's logic!" :-D
@insouciantFox
@insouciantFox 3 жыл бұрын
When guessing, guess π. When in doubt, Euler did it.
@OuroborosVengeance
@OuroborosVengeance 3 жыл бұрын
This is pure poetry
@arvindsrinivasan424
@arvindsrinivasan424 3 жыл бұрын
If you decide to take the “hard” route and integrate first, the integral gives pi*n*(1-e^-(1/n)) [I integrated this using Residue Theorem and recognizing that the real part of (e^(i*x/n)-1)/(i*x/n) is equal to sin(x/n)/(x/n) ] Taking the limit as it goes to infinity requires taking the limit of an indeterminate argument, but is quite easy to show it gives pi
@charlesbromberick4247
@charlesbromberick4247 3 жыл бұрын
that´s what I would have tried
@elephantdinosaur2284
@elephantdinosaur2284 3 жыл бұрын
Nice solution Arvind! I tried my luck with n*exp(iz/n)/z(z^2+1) directly but had issues doing the small loop around the origin because of the pole there. Your trick circumvents the issue nicely. Regarding the final limit I like to expand exp(-1/n) = 1 - 1/n + O(1/n^2) and then just substituting in. Saves all the messiness with l'hopitals rule.
@violintegral
@violintegral 2 жыл бұрын
You could also use Feynman's trick to evaluate this integral as an alternative to Residue Theorem
@blightedcrowmain8236
@blightedcrowmain8236 3 жыл бұрын
i like how he says ty for watching at the beggining
@pbj4184
@pbj4184 3 жыл бұрын
Now that you say it, only Dr. Peyam does that 🤔 I never noticed it but now I realized I always know it's a Dr. Peyam video whenever I hear those words. 11/10 on branding, Dr. Peyam!
@thedoublehelix5661
@thedoublehelix5661 3 жыл бұрын
7:25 lmaoo
@byronvega8298
@byronvega8298 3 жыл бұрын
Ah yes, the fundamental theorem of engineering
@AnkitSharma-ef7md
@AnkitSharma-ef7md 3 жыл бұрын
Dr. Peyam is high on mathematics. I loved the approach. Coolest professor I ever have seen. Wished you were my post graduate professor.. 😁😁😁😁😁
@tejpalsinghantal8987
@tejpalsinghantal8987 3 жыл бұрын
Mandatory comment to help with the algorithm
@umerfarooq4831
@umerfarooq4831 3 жыл бұрын
Great video informative , interesting and nonetheless entertaining especially the "some kind of people"
@LatestBinge
@LatestBinge 3 жыл бұрын
Love your videos! I'm an 8th grader but thanks to you I start to understand and love complex math!
@danielaorozco9995
@danielaorozco9995 3 жыл бұрын
feels like magic :0 thanks a lot doctor!
@joelschwed7177
@joelschwed7177 3 жыл бұрын
There is no limit to your wisdom good sir...
@yogeshwagh2849
@yogeshwagh2849 3 жыл бұрын
Awesome 🙌🏻
@TheAustrianAnimations87
@TheAustrianAnimations87 3 жыл бұрын
This video got randomly recommended to me. Nice, I've learned something new.
@RalphDratman
@RalphDratman 3 жыл бұрын
I enjoy mathematics but this is one of those moments when I become very aware that I could never become a mathematician. I did become an engineer (of computer-related hardware and software), but unofficially. Now that I'm retired, I wonder how I ever managed to do any of that!
@shivaudaiyar2556
@shivaudaiyar2556 3 жыл бұрын
Thanks for such a great content with love from India
@rounaksinha5309
@rounaksinha5309 3 жыл бұрын
Happy mathematics day Perfect integral for Mathematics day
@IoT_
@IoT_ 3 жыл бұрын
7:26 I'm an engineer and I don't understand why you didn't allow to put equal sign between sine function and x on your math channel 🌝
@123ucr
@123ucr 3 жыл бұрын
If I were a math professor like you, I would put this problem in a Calculus 2 Final exam or an AP Calculus BC exam. Heck, it might even be an extra credit problem. Why? For starters, because you would have to probably use L'Hospital's rule and you definitely need your trigonometry skills to solve this problem. Second of all, this problem's solution can be messy like a chili cheeseburger and takes a lot of time to solve (at least 9-10 minutes). A typical Calculus 2 problem takes like 5-7 minutes to solve. Third and finally, this is one of the hardest Calculus 2 problems that I have seen in my life.
@UltraMaXAtAXX
@UltraMaXAtAXX 3 жыл бұрын
Well, except a calculus II student wouldn't really know about the DCT.
@123ucr
@123ucr 3 жыл бұрын
@@UltraMaXAtAXX --- I guess it looks like a Calculus 2 problem. That is why I would say it should be an extra credit problem on a Calculus 2 final. Is it possible for a Calculus 2 student to solve this problem? Short answer, yes. But, it is difficult for a Calculus 2 student to solve? Short answer, also yes. In reality, it is actually an advanced calculus or a real analysis problem or at least an Honors Calculus 2 problem.
@Chariotuber
@Chariotuber 3 жыл бұрын
great video as always dr peyam! this really brings me back to when I took a mathematical physics class, which basically ended up being a class on functional analysis. good times lol
@comingshoon2717
@comingshoon2717 3 жыл бұрын
gracias Doctor Peyam... ahora ya sabemos que los límites pueden ingresar dentro de una integral sin problemas jejej ... saludos desde 🇨🇱🇨🇱
@deadfish3789
@deadfish3789 3 жыл бұрын
You did this proof entirely backwards, but I liked it
@deadfish3789
@deadfish3789 3 жыл бұрын
Also I knew you could swap it if f_n-->f uniformly, but I'm assuming this is a weaker condition, and therefore applicable in more circumstances
@JSSTyger
@JSSTyger 3 жыл бұрын
Dr Peyam is like that midnight snack while the wife is sleeping.
@vishalmishra3046
@vishalmishra3046 3 жыл бұрын
Simply change integration range from a to b and you get the result | atan(b) - atan(a). Now replace a and b with ∞ and -∞ to get π/2 - (-π/2) = π. Simple.
@drpeyam
@drpeyam 3 жыл бұрын
You’re completely missing the point of the video, this is precisely how you shouldn’t evaluate the integral
@vishalmishra3046
@vishalmishra3046 3 жыл бұрын
@@drpeyam For a moment let's assume no specific value of a and b except that both are real and a < b. Is there any combination of (a,b) for which the value of the integral is not ( atan(b) - atan(a) ) ? Given no exceptions, the value of the integral remains accurate for all combinations of such a constrained pair (a, b) including when -a and b are extremely large (and approaching infinity). This is clearly a more generalized solution that is also applicable to the specific case of (a, b) -> (-∞, ∞) in the video. Right ?
@drpeyam
@drpeyam 3 жыл бұрын
Again, not the point of the video, there are some integrals for which you cannot simply pass to the limit like n times indicator of (0,1/n). The point is not the (a,b) values but whether you can simply put the limit inside the integral
@toby6225
@toby6225 3 жыл бұрын
Dr. Peyam: uses Dominated Convergence Theorem Engineers: we don't do that here
@Frandahab
@Frandahab 3 жыл бұрын
Physicist here, we don't do that either xD
@lucho2868
@lucho2868 3 жыл бұрын
9:42
@rounaksinha5309
@rounaksinha5309 3 жыл бұрын
Happy National Mathematics day to everyone
@jamesbentonticer4706
@jamesbentonticer4706 3 жыл бұрын
Is it just on India? Or is it national math day in usa as well?
@rounaksinha5309
@rounaksinha5309 3 жыл бұрын
@@jamesbentonticer4706Hii! James it is just India. IN USA and all over the world Math day is celebrated on 14 March and I have also read somewhere that another Math day or same kinda stuff is observed on 15 October in USA
@jamesbentonticer4706
@jamesbentonticer4706 3 жыл бұрын
@@rounaksinha5309 okay thanks for the info. I thought I'd make sure before I went and said happy math day to everyone lol
@frozenmoon998
@frozenmoon998 3 жыл бұрын
If there is a Peyam, there is a way!
@adam_elm_5680
@adam_elm_5680 3 жыл бұрын
im happy when I get a notif of a new video!
@mathjitsuteacher
@mathjitsuteacher 3 жыл бұрын
Hi Peyam, great video as always! There is a little mistake. The inequality -x
@drpeyam
@drpeyam 3 жыл бұрын
It is true actually. sin(-pi/2) = -1 which is between -pi/2 and pi/2
@mathjitsuteacher
@mathjitsuteacher 3 жыл бұрын
@@drpeyam I believe you wanted to use sin(x)
@robertgerbicz
@robertgerbicz 3 жыл бұрын
You also made a mistake, in the video -x
@drpeyam
@drpeyam 3 жыл бұрын
Yeah I meant to say for positive x. In any case doesn’t matter since we’re taking absolute values
@jiteshsingh3473
@jiteshsingh3473 3 жыл бұрын
Make video on value of evolution of 'e'
@strmandola5484
@strmandola5484 3 жыл бұрын
Please calculate integral 1/a + cos(X) !
@heliocentric1756
@heliocentric1756 3 жыл бұрын
7:26 😂😁 What type of people are you referring to?
@gisopolis77
@gisopolis77 3 жыл бұрын
engineers
@nanangmuhammad2067
@nanangmuhammad2067 3 жыл бұрын
I like this trick. Really can we put limit inside integral?
@afrolichesmain777
@afrolichesmain777 3 жыл бұрын
If the conditions that were shown are satisfied, you can swap the integral and limit signs. However, if you know that fn converges to f uniformly, you can also swap the limit and integral signs.
@ajiwibowo8736
@ajiwibowo8736 3 жыл бұрын
Doc, sometimes I do innequalities of rational function involving absolute value in it with the number test on number line. If mathematician they wont do test like that right? They must be make it in some cases or so. How did you do if theres some innequalities like that doc? May you give us how is your mathematical method on solving that kind of problem?
@charlesbromberick4247
@charlesbromberick4247 3 жыл бұрын
smart guy
@michaelz2270
@michaelz2270 3 жыл бұрын
You really dominated in that video.
@drpeyam
@drpeyam 3 жыл бұрын
LOL
@DELTASERPENT
@DELTASERPENT 3 жыл бұрын
Great teaching Payamji. Have you written any books? Maths made easy!!!!
@drpeyam
@drpeyam 3 жыл бұрын
I should!!!
@레온하르트-r2p
@레온하르트-r2p 3 жыл бұрын
Lebesgue Integration Theory is very fun
@arturcostasteiner9735
@arturcostasteiner9735 3 жыл бұрын
Grreat! The dominated convergence theorem comes from measure theory, right?
@drpeyam
@drpeyam 3 жыл бұрын
Yes
@carlosgiovanardi8197
@carlosgiovanardi8197 3 жыл бұрын
GREAT! Thanks for sharing. if possible, can you make videos on pde´s (parabolic, elliptic, hyperbolic) focusing on examples and their solutions? do you know the books of Budak, Samarsky and Tijonov?
@drpeyam
@drpeyam 3 жыл бұрын
There are two PDE playlists, check them out! Also nothing beats Evans’ textbook
@carlosgiovanardi8197
@carlosgiovanardi8197 3 жыл бұрын
@@drpeyam thank you for your answer. i know your playlists. appreciate but this not what i am looking for. anyway, will go after your reference.
@dipayanguhapatra3580
@dipayanguhapatra3580 3 жыл бұрын
Please integrate x square times of tan2x dx x^2.tan2x dx
@iabervon
@iabervon 3 жыл бұрын
I say that, once you've proven what the derivative of sin x is, you can use l'Hopital's rule to find the limit of (sin x)/x if you forget what that value was. I think the first time I saw the derivation of the derivative of sin x, that limit wasn't called out as a lemma, and we just proved it again later when we needed it for something else.
@randomlife7935
@randomlife7935 3 жыл бұрын
According to blackpenredpen, using l'Hospital's rule on the limit of (sin x/x) is wrong because to determine the derivative of sin x, the limit of (sin x/x) is used, thus making the proof circular.
@iabervon
@iabervon 3 жыл бұрын
@@randomlife7935 If you've gotten to the point of being able to use the derivative of sin x in arbitrary problems, there's no reason you shouldn't be able to use it for the limit of (sin x)/x. Of course, if you're allowed to use the derivative of sin x in arbitrary problems, you should just be able to use the fact that the limit is 1, because you proved it in class along the way, but you're not necessarily going to memorize and reference every true statement you've established. L'Hopital's rule is the easiest way to reprove it from the table of derivatives, if you need it for some other limit, like in this case. bprp's point is that, if the question on the test is "prove the limit of (sin x)/x", you can't use l'Hopital's rule, because the implied context of that question is that we haven't yet proven anything that we used that limit to prove. But if the question on the test is something new, you can use everything we've seen in class, and you don't have to use the original derivations if you need values you've forgotten.
@tesla5374
@tesla5374 3 жыл бұрын
Waaaw nice
@yacinedjalil2355
@yacinedjalil2355 3 жыл бұрын
Intégrale indéfinie comme lim quand x tend vers infini
@reogreggeen5738
@reogreggeen5738 3 жыл бұрын
How do we properly justify the application of the DCT to an improper Riemann integral to begin with? Is this not an issue?
@drpeyam
@drpeyam 3 жыл бұрын
Not really an issue, here we’re doing a Lebesgue integral actually, and the DCT applies to (improper) Lebesgue integrals
@reogreggeen5738
@reogreggeen5738 3 жыл бұрын
@@drpeyam Ah! Okay, thank you for the clarification on this - much appreciated. Have a good one!
@kanewilliams1653
@kanewilliams1653 3 жыл бұрын
wow I have never heard of the Dominated Convergence Theorem. Make a video on it!! :=)
@drpeyam
@drpeyam 3 жыл бұрын
Already done ✅
@kanewilliams1653
@kanewilliams1653 3 жыл бұрын
@@drpeyam Oops.. should have looked at your comments.. will watch it now!!
@zedisnotded8136
@zedisnotded8136 3 жыл бұрын
I don't understand why you would put the limit inside the integral when you need to know the limit of the inside function before anyway.
@ςγτε
@ςγτε 3 жыл бұрын
Like-dislike ratio is ∞ (infinite) now. Don't make it less, everyone !
@pbj4184
@pbj4184 3 жыл бұрын
The domain of 1/x is R - {0}!! How dare you not respect that??? Division by 0 is meaningless!!!! Aaaaargh!!!!!!!!!!!!
@ςγτε
@ςγτε 3 жыл бұрын
@@pbj4184 That's why be positive with your limit ! 😉
@arvindsrinivasan424
@arvindsrinivasan424 3 жыл бұрын
@@pbj4184 in certain contexts this may be true, however you can define 1/x on the Riemann sphere including infinites...
@pkvlogs5078
@pkvlogs5078 3 жыл бұрын
What if one adopts to clash this with fourier transformations or EULER integrals...???..☘🙂
@Kdd160
@Kdd160 3 жыл бұрын
That looked super horrible in the beginning but the answer was awesome 🤩🤩 pure math is my fav 😍❤
@bouch7643
@bouch7643 3 жыл бұрын
You could use L'Hopital theorem too because when n goes to infinity, lim of f (n) = Sin (x/n) is equal to 0 and lim of g (n)= x/n is equal to 0. Then lim of f (n)/g (n) is equal to lim f'(n)/g'(n). I did not do thd calculus but this should works. Thoughts?
@drpeyam
@drpeyam 3 жыл бұрын
The main point is why you can put the limit inside the integral 🙃
@bouch7643
@bouch7643 3 жыл бұрын
@@drpeyam it is obvious because integrals are additions technically.
@bouch7643
@bouch7643 3 жыл бұрын
@@drpeyam sorry I just saw you mebtionned L'Hopital at 2:25. To burn steps in maths videos I use the youtube 10 fast forward feature a bit too much.
@Grassmpl
@Grassmpl 3 жыл бұрын
You completely ignored the fact that the integrand has a singularity at x=0.
@drpeyam
@drpeyam 3 жыл бұрын
No it’s removable, no big deal
@Grassmpl
@Grassmpl 3 жыл бұрын
@@drpeyam yeah but you didn't justify that when finding the upper bounded "g" function.
@yilmazkaraman256
@yilmazkaraman256 3 жыл бұрын
can i use dominated convergence theorem for changing differentiation and integration?
@drpeyam
@drpeyam 3 жыл бұрын
Actually yes, you write the derivative as a difference quotient and use the DCT. Check out my video on the dominated convergence theorem
@yilmazkaraman256
@yilmazkaraman256 3 жыл бұрын
@@drpeyam thanks. I will check your video
@JoshuaHernandez8a
@JoshuaHernandez8a 3 жыл бұрын
Engineering be like: this is an internal product of a Dirac distribution at 0 and an arctangent derivative
@FT029
@FT029 3 жыл бұрын
2:42, I'm wondering why you can't use L'hopital's rule to evaluate lim as y goes to 0 of sin y / y. great explanation of the dominated convergence theorem! reminds me a bit of another similar one, arzela's theorem
@shivaudaiyar2556
@shivaudaiyar2556 3 жыл бұрын
No we cannot use lopithals rule
@FT029
@FT029 3 жыл бұрын
@@shivaudaiyar2556 Why?
@shivaudaiyar2556
@shivaudaiyar2556 3 жыл бұрын
@@FT029 we cannot use lopithals rule it's explanation is in one of the vedios of blackpenredpen watch it
@shivaudaiyar2556
@shivaudaiyar2556 3 жыл бұрын
@@FT029 kzbin.info/www/bejne/o4vMgZevfd6IrKc
@shivaudaiyar2556
@shivaudaiyar2556 3 жыл бұрын
@@FT029 watch this video
@mohammadabdulla8601
@mohammadabdulla8601 2 жыл бұрын
for some kind of ppl you put equal but not on this channel 😂😂😂😂😂😂😂😂
@drpeyam
@drpeyam 2 жыл бұрын
?
@mohammadabdulla8601
@mohammadabdulla8601 2 жыл бұрын
@@drpeyam because some engineers use the approximation sinx = x for small x.I thought you are talking about this point.
@enzy8022
@enzy8022 3 жыл бұрын
I can’t help it, but you look so much like Kyle from Nelk cool vids though
@arnoldvillodas4997
@arnoldvillodas4997 3 жыл бұрын
👍👍👍👍👍👍👍👍👍👍👍
@davidepierrat9072
@davidepierrat9072 3 жыл бұрын
gud stuf
@aryadebchatterjee5028
@aryadebchatterjee5028 3 жыл бұрын
15th viewer 3rd like
a non analytic smooth function
17:45
Dr Peyam
Рет қаралды 14 М.
Dominated Convergence Theorem
19:17
Dr Peyam
Рет қаралды 16 М.
When u fight over the armrest
00:41
Adam W
Рет қаралды 24 МЛН
ЛУЧШИЙ ФОКУС + секрет! #shorts
00:12
Роман Magic
Рет қаралды 30 МЛН
But I AM joking, Mr. Feynman!
13:37
Dr Peyam
Рет қаралды 114 М.
Hopital Counterexample
12:09
Dr Peyam
Рет қаралды 14 М.
Ramanujan would be proud of this integral
8:58
Dr Peyam
Рет қаралды 7 М.
life changing quadratic formula
10:46
Dr Peyam
Рет қаралды 1,5 МЛН
A nice integral.
12:59
Michael Penn
Рет қаралды 43 М.
so you want a HARD integral from the Berkeley Math Tournament
22:28
blackpenredpen
Рет қаралды 557 М.
easy derivative but it took me 32 minutes
32:04
blackpenredpen
Рет қаралды 190 М.
BIG brilliant integral
14:55
blackpenredpen
Рет қаралды 104 М.
Fundamental Theorem of Calculus Explained | Outlier.org
16:27
OutlierOrg
Рет қаралды 349 М.
Measure Theory 10 | Lebesgue's Dominated Convergence Theorem
12:17
The Bright Side of Mathematics
Рет қаралды 43 М.
When u fight over the armrest
00:41
Adam W
Рет қаралды 24 МЛН