I don't understand much english but i think math is an universal lenguaje. Thanks good man.
@TheMathSorcerer4 жыл бұрын
You are welcome!
@teferasinara1768 Жыл бұрын
Your videos are helping me for upcoming exams. But I want to say one thing only, l will expect a lot better videos with you, thank you so very much
@pruthveshmandle49782 жыл бұрын
Thank You, Sir Issac Newton.
@ShanBojack Жыл бұрын
😂
@MdMahafuzurRahman-y3oАй бұрын
That is really helpful.. Thanks a lot.
@ayushbansal70612 жыл бұрын
Thank you so much 💓
@crispindebolivia55394 жыл бұрын
Me ayudó mucho, gracias 👍
@TheMathSorcerer4 жыл бұрын
👍
@parrot...30554 жыл бұрын
Which country u belong.?? Is India???? (
@TheMathSorcerer4 жыл бұрын
No I'm in the US
@MohammadAfzal57 Жыл бұрын
Thank you 😊
@bora36492 жыл бұрын
it helped me a lot.
@mohanramg15653 жыл бұрын
Thank you
@musachohan8782 жыл бұрын
Awesome teacher
@ricardogarzacorona6302 жыл бұрын
thank you very much, you're awesome
@anuraagvaddi52724 жыл бұрын
Thank you so much!!
@TheMathSorcerer4 жыл бұрын
You're welcome!
@dikshagoyal55263 жыл бұрын
Thanks a lot
@Jason-ui9ue4 жыл бұрын
thank!! the video is useful for me
@TheMathSorcerer4 жыл бұрын
Awesome !
@young5668-f8s4 жыл бұрын
감사합니다 감사합니다
@ahalyas60444 жыл бұрын
Can u please tell the answer of the question u gave in the last to try ??
@evilbaymax56674 жыл бұрын
Can you help me solve the exact problem but with Heaviside's expansion theorem on partial fractions method, please?!
@evilbaymax56674 жыл бұрын
I've no idea how to find the same result as yours in video🙈
@carultch Жыл бұрын
@@evilbaymax5667 An example where Heaviside's method finds all coefficients, is the following: (3*s^2 + 2*s + 3)/(s*(s + 1)*(s + 3)) Generally, Heaviside coverup helps you for simple linear factors, and stand-alone variables as factors. It helps you find the highest ordered fraction of repeated roots as well, but then you need another method to find the remaining coefficients. I prefer plugging in strategic s-values to find the other coefficients. Set up partial fractions: A/s + B/(s + 1) + C/(s + 3) To find A, B, and C, cover up the corresponding fraction in the denominator (which I'll mark with #), and find the s-value that makes what you covered up, equal to zero. Using s= 0: A = (3*0^2 + 2*0 + 3)/(#*(0 + 1)*(0 + 3)) = 3/3 = A = 1 Using s = -1: B = (3*(-1)^2 + 2*-1 + 3)/(-1*(###)*(-1 + 3)) = (3 - 2 + 3)/(-1) = B = -4 Using s = -3: C = (3*(-3)^2 + 2*(-3) + 3)/(-3*(-3 + 1)*(###)) = (27 - 6 + 3)/(12) = C = 2 Thus the partial fraction result is: 1/s - 4/(s + 1) + 2/(s - 3) Invert the Laplace transform, to get the solution: 1 - 4*e^(-t) + 2*e^(-3*t)
@LolLipop208987 ай бұрын
thank you sir
@swezaldias31983 жыл бұрын
Thank you sir
@TheMathSorcerer3 жыл бұрын
You are welcome!
@aniketgope92932 жыл бұрын
Thankyou so much sir 💖
@periswambui15534 жыл бұрын
How about laplace inverse of 1/S^2+S+1
@TheMathSorcerer4 жыл бұрын
Complete the square 😎I might have this video will look tomorrow but yeah, complete the square and use the first translation theorem and you got it,👍
@periswambui15534 жыл бұрын
@@TheMathSorcerer okay thanks though i would appreciate if you did a video on that
@Lightofthatstar5 ай бұрын
Why couldn’t we write cos?
@albertoalmeida503 Жыл бұрын
Obrigado Achei que teria que usar frações parciais
@DeepanshuSharma-tc9lr4 жыл бұрын
Good in this question i got an important formula that was not in my book. Thanks i am from india and you??
@TheMathSorcerer4 жыл бұрын
Very cool! I live in the US
@luson_18 Жыл бұрын
What if we have s² instead of s in the numerator?
@carultch Жыл бұрын
Given: s^2/(s + 1)^2 Add zero in a fancy way, to form a term we can reduce to 1: (s^2 + 2*s + 1 - 2*s - 1)/(s + 1)^2 Gather the perfect square: ((s + 1)^2 - 2*s - 1)/(s + 1)^2 Split the fraction and simplify the first term to 1: (s + 1)^2/(s + 1)^2 - (2*s + 1)/(s + 1)^2 1 - (2*s + 1)/(s + 1)^2 Again, add zero in a fancy way, to form a term we can cancel: (2*s + 1 + 2 - 2)/(s + 1)^2 = 2*(s + 1)/(s+1)^2 - 1/(s + 1)^2 = 2/(s + 1) - 1/(s + 1)^2 Reconstruct: 1 - 2/(s + 1) + 1/(s + 1)^2 Inverse Laplace of first two terms: L^-1{1} = delta(t) L^-1{-2/(s + 1)} = -2*e^(-t) For the third term, let G(s) = 1/(s + 1), which means the corresponding g(t) = e^(-t). Using the s-derivative property, we can convert G(s) into the function we have: L^-1{-d/ds G(s)} = t*g(t) -d/ds G(s) = 1/(s + 1)^2 Thus: L^-1{1/(s + 1)^2} = t*e^(-t) And we can construct the solution: L^-1{s^2/(s + 1)^2} = delta(t) - 2*e^(-t) + t*e^(-t)
@الاستاذقاسمالكرعاوي Жыл бұрын
❤❤❤❤❤❤
@domeniccosio18593 жыл бұрын
🐐
@KangarooJack4203 жыл бұрын
this guy kinda looks like jeff bezos ngl
@fodderking4 жыл бұрын
THANK YOU BASED GOD
@TheMathSorcerer4 жыл бұрын
❤️
@zakesrangoaga6454 жыл бұрын
How about s/(s^2 + 1)^3
@carultch Жыл бұрын
Given s/(s^2 + 1)^3. Assume a solution that is the following linear combination: A*cos(t) + B*sin(t) + C*t*cos(t) + D*t*sin(t) + E*t^2*cos(t) + F*t^2*sin(t) Take the Laplace transforms of each of the above, using the s-derivative property. L{cos(t)} = s/(s^2 + 1) L{sin(t)} = 1/(s^2 + 1) L{t*cos(t)} = -d/ds s/(s^2 + 1) = (s^2 - 1)/(s^2 + 1)^2 L{t*sin(t)} = -d/ds 1/(s^2 + 1) = 2*s/(s^2 + 1)^2 L{t^2*cos(t)} = -d/ds (s^2 - 1)/(s^2 + 1)^2 = (2*s*(s^2 - 3))/(s^2 + 1)^3 L{t^2*sin(t)} = -d/ds 2*s/(s^2 + 1)^2 = (6*s^2 - 2)/(s^2 + 1)^3 Construct an arbitrary linear combination, and equate to the original: s/(s^2 + 1)^3 = A*s/(s^2 + 1) + B/(s^2 + 1) + C*(s^2 - 1)/(s^2 + 1)^2 + D*2*s/(s^2 + 1)^2 + E*(2*s*(s^2 - 3))/(s^2 + 1)^3 + F*(6*s^2 - 2)/(s^2 + 1)^3 Clear denominators, expand, and gather: s = A*s*(s^2 + 1)^2 + B*(s^2 + 1)^2 + C*(s^2 - 1)*(s^2 + 1) + D*2*s*(s^2 + 1) + E*(2*s*(s^2 - 3)) + F*(6*s^2 - 2) s = A*s^5 + 2*A*s^3 + A*s + B*s^4 + 2*B*s^2 + B + C*s^4 - C + 2*D*s^3 + 2*D*s + 2*E*s^3 - 6*E*s + 6*F*s^2 - 2*F s = A*s^5 + (B + C)*s^4 + (2*A + 2*D + 2*E)*s^3 + (2*B + 6*F)*s^2 + (2*D - 6*E)*s + B - C - 2*F Equate like coefficients: A = 0 B + C = 0 2*A + 2*D + 2*E = 0 2*B + 6*F = 0 2*D - 6*E = 1 B - C - 2*F = 0 Solve system of equations for the variables: A = 0, B = 0, C = 0, D = 1/8, E = -1/8, F = 0 Thus, the solution is: 1/8*t*sin(t) - 1/8*t*cos(t)^2
@mrbk11202 жыл бұрын
The answer is te^-t
@Knightfire663 жыл бұрын
u explained it waaay to complicated. do +1-1 trick s+q/(s+q)^2 - 1/(s+1)^2 now s+q and ()^2 of (s+q)^2 do cancel each other. now we have 1(s+q) - 1/(s+1)^2 and using the standard formula for e^(at) we get e^-t - t*e^-t