No video

Is there a better alternative for Ti-6Al-4V in titanium 3D printing? [VIDEO ABSTRACT]

  Рет қаралды 1,230

Dr Alec E Davis

Dr Alec E Davis

Күн бұрын

Ti-6Al-4V (Ti64) is the 'go-to' alloy for many applications, particularly in aerospace industries. But this alloy is designed for cast and wrought processes like forging and not for 3D printing (additive manufacturing). So, should we just assume Ti64 is still our best option for most applications?
-Probably not.
In this video I compare two titanium alloys deposited using high-deposition-rate 3D printing (additive manufacturing) - Ti-6Al-4V (Ti64) & Ti-6Al-2Sn-4Zr-2Mo-0.1Si (Ti6242) - to answer this question.
Original research paper: doi.org/10.100...
Research credits: A. E. Davis, A. E. Caballero, R. Biswal, S. W. Williams, P. B. Prangnell. All research conducted at the University of Manchester, and Cranfield University, UK.
Video credits: Produced, written, recorded, and performed by Alec E. Davis. Except for WAAM process video: recorded by A. E. Caballero.
Video doi: doi.org/10.528...
This work was supported by grants: NEWAM (EPSRC EP/R027218/1), Lightform (EPSRC EP/R001715/1), and Henry Royce Institute for Advanced Materials (EPSRC EP/R00661X/1, EP/S019367/1, EP/P025021/1, and EP/P025498/1). Alec E. Davis is also appreciated for equipment loan from the ‪@materialsavclub‬.
Alec E. Davis links:
alec.davis@manchester.ac.uk
/ alec_e_davis
/ alecdavis1986
www.royce.ac.uk/
www.materials....
The NEWAM Project: newam.uk/
References:
[1] A. E. Davis, A. E. Caballero, R. Biswal, S. W. Williams, and P. B. Prangnell, “Comparison of Microstructure Refinement in Wire-Arc Additively Manufactured Ti-6Al-2Sn-4Zr-2Mo-0.1Si and Ti-6Al-4V Built with Inter-Pass Deformation,” Metall. Mater. Trans. A, 2022, doi: 10.1007/s11661-022-06811-1.
[2] A. Ho, H. Zhao, J. W. Fellowes, F. Martina, A. E. Davis, and P. B. Prangnell, “On the origin of microstructural banding in Ti-6Al4V wire-arc based high deposition rate additive manufacturing,” Acta Mater., vol. 166, pp. 306-323, 2019, doi: 10.1016/j.actamat.2018.12.038.
[3] J. Donoghue, A. A. Antonysamy, F. Martina, P. A. Colegrove, S. W. Williams, and P. B. Prangnell, “The effectiveness of combining rolling deformation with Wire-Arc Additive Manufacture on β-grain refinement and texture modification in Ti-6Al-4V,” Mater. Charact., vol. 114, pp. 103-114, 2016, doi: 10.1016/j.matchar.2016.02.001.
[4] J. Donoghue et al., “On the Observation of Annealing Twins during Simulating β-Grain Refinement in Ti-6Al-4V High Deposition Rate AM with In-Process Deformation,” Acta Mater., vol. 186, pp. 229-241, 2019, doi: 10.1016/j.actamat.2020.01.009.
[5] A. E. Davis, J. R. Kennedy, J. Ding, and P. B. Prangnell, “The effect of processing parameters on rapid-heating β recrystallization in inter-pass deformed Ti-6Al-4V wire-arc additive manufacturing,” Mater. Charact., vol. 163, no. February, p. 110298, 2020, doi: 10.1016/j.matchar.2020.110298.
[6] A. E. Davis, A. E. Caballero, and P. B. Prangnell, “Confirmation of rapid-heating β recrystallization in wire-arc additively manufactured Ti-6Al-4V,” Materialia, vol. 13, no. June, pp. 0-5, 2020, doi: 10.1016/j.mtla.2020.100857.
[7] J. R. Hönnige et al., “The Effectiveness of Grain Refinement by Machine Hammer Peening in High Deposition Rate Wire-Arc AM Ti-6Al-4V,” Metall. Mater. Trans. A, vol. 51, pp. 3692-3703, 2020.
[8] A. E. Davis, J. R. Hönnige, F. Martina, and P. B. Prangnell, “Quantification of strain fields and grain refinement in Ti-6Al-4V inter-pass rolled wire-arc AM by EBSD misorientation analysis,” Mater. Charact., vol. 170, no. May, pp. 151-155, 2020, doi: 10.1016/j.matchar.2020.110673.
[9] L. Neto, S. W. Williams, J. Ding, J. R. Hönnige, and F. Martina, “Mechanical Properties Enhancement of Additive Manufactured Ti-6Al-4V by Machine Hammer Peening,” Adv. Surf. Enhanc. 1st Int. Conf. Adv. Surf. Enhanc., vol. 1, pp. 121-132, 2020, doi: 10.1007/978-981-15-0054-1.
[10] H. Zhao, A. Ho, A. E. Davis, A. A. Antonysamy, and P. B. Prangnell, “Automated image mapping and quantification of microstructure heterogeneity in additive manufactured Ti6Al4V,” Mater. Charact., vol. 147, no. July 2018, pp. 131-145, 2019, doi: 10.1016/j.matchar.2018.10.027.
[11] J. W. Lu, Y. Q. Zhao, P. Ge, and H. Z. Niu, “Microstructure and beta grain growth behavior of Ti-Mo alloys solution treated,” Mater. Charact., vol. 84, no. 96, pp. 105-111, 2013, doi: 10.1016/j.matchar.2013.07.014.
[12] R. K. Nalla, B. L. Boyce, J. P. Campbell, J. O. Peters, and R. O. Ritchie, “Influence of microstructure on high-cycle fatigue of Ti-6Al-4V: bimodal vs. lamellar structures,” Metall. Mater. Trans. A, vol. 33A, pp. 899-918, 2002, doi: 10.13140/RG.2.1.3668.1201.

Пікірлер: 4
The Future of Auto Manufacturing: AI Driven Design
20:17
New Mind
Рет қаралды 970 М.
WILL IT BURST?
00:31
Natan por Aí
Рет қаралды 40 МЛН
Люблю детей 💕💕💕🥰 #aminkavitaminka #aminokka #miminka #дети
00:24
Аминка Витаминка
Рет қаралды 1,2 МЛН
β-Stabilised Titanium Alloys [LECTURE]
30:51
Dr Alec E Davis
Рет қаралды 754
How to 3D-print titanium with Bastion Cycles
8:35
VeloVeloVelo
Рет қаралды 31 М.
NASA's Additive Manufacturing Alloys for High Temperature Applications Webinar
30:45
NASA Technology Transfer Program
Рет қаралды 10 М.
The Material Science of Metal 3D Printing
15:00
Real Engineering
Рет қаралды 2,6 МЛН
This Part is so Difficult, They Told Me It COULDN'T Be Done
11:47
TITANS of CNC MACHINING
Рет қаралды 5 МЛН
MST Review Competition: residual stress, Ti-6Al-4V
19:54
bhadeshia123
Рет қаралды 4,1 М.
Making an atomic trampoline
58:01
NileRed
Рет қаралды 5 МЛН
Real-time observation of alpha nucleation in Ti-6Al-4V [VIDEO ABSTRACT]
4:07
What Is Electron Beam Melting (EBM)?
4:53
Additive Manufacturing Media
Рет қаралды 28 М.
Cyclic deformation and fatigue behaviour of titanium alloy Ti-6Al-4V built by directed energy ...
13:02