几何宇宙3-低维看高维

  Рет қаралды 49,564

眼见为识

眼见为识

Күн бұрын

Пікірлер: 91
@non-displaynon-display9122
@non-displaynon-display9122 Жыл бұрын
魏先生是华语科普视频里做得最好的,没有之一。订阅数量配不上视频的质量。
@光辉-e3c
@光辉-e3c Жыл бұрын
解说得真好,把黎曼几何的最本质内涵一次性说清了。在正确的度规下,不同蚂蚁的测量结果,应该而且必须相等。
@polyf1115
@polyf1115 Жыл бұрын
真的把非常困難的觀念想辦法講解給大家知道 太佩服了
@dunchiban
@dunchiban Жыл бұрын
终于又看见这最高质量的科普视频了!大家一起来点赞,支持楼主!!!
@stephenzhao5809
@stephenzhao5809 Жыл бұрын
👍非常感兴趣, 期待赵先生的下期讲解。5:10 基本几何概念 ... 6:40 内蕴(intrinsic)和外嵌(extrinsic) ... 地球的表面可以看作为被嵌入到三维空间中的二维曲面又或者二维的流形, 从三维视角看, 可以很容易地画出球面的球心, 半径, 周长或者法线, 但是这些几何量的共同特点是全部依赖三维的外部视角. 7:14 并不存在于这个球面本身的空间里面. 球面展开, 外嵌的几何量就会消失, 而处在低维的观察者任然还能观测到的几何量就叫内蕴. 7:42 黎曼: 放弃外嵌, 假如你能够知道一个空间中的每一条可能存在的曲线的长度, 你就已经知道了这个空间的一切属性. 8:25 ... 9:43 并不存在任何一个地图系统可以在不经过拉伸和剪裁的前提下完美的覆盖一个弯曲的流形. 空间是由无数个点组成的. 如果这些点位上存在着拉伸又或者变形, 那么我们可以对应的放上一把尺子10:00 ... 10:40 度规张量.
@走走道儿疯了
@走走道儿疯了 Жыл бұрын
科普如果有奖 老师应该上榜
@lha987
@lha987 Жыл бұрын
必须的,举双手双脚赞成
@samuelyang9930
@samuelyang9930 Жыл бұрын
高品質的科普影片,超棒的!
@Lester-zz6pn
@Lester-zz6pn Жыл бұрын
說明的很好懂,影片也很用心去做。我給99分!
@kantimmanual2504
@kantimmanual2504 Жыл бұрын
請問您說的內容和麥卡托海圖高緯度失真有關嗎?🤔 怎麼好像似曾相識?
@bloodfish0614
@bloodfish0614 Жыл бұрын
1."彎曲"是三維對二維的外部視角,彎曲並不存在於一維本身的空間裡面,在一維中除非能做出各種點之間的差異 例如這個點比較扁(但扁也是二維才能得知的外部視角),不然無法得知如何在一維中以一維視角測量出維度彎曲。 但是退一步講,一維可以觀測出二維,在一維運動中點與點運動重疊時可以用數據得知二維的線跟面(或者這就是一維空間所理解的彎曲),但無法如同三維觀測者一樣分辨此線在空間中有沒有重疊;就如同一個人在時空穿越水晶球中看到了某一刻畫面,又在另一個時間點看到該畫面,但無法分辨出該畫面是同一刻亦或是不同時空背景中無交集的畫面 2.螞蟻可以用移動了幾步計算長度,而各自的地圖不同則是可以用數不清的螞蟻統計學做出相對座標,例如這一步踩的是什麼色、溫度如何、柔軟度之類的客觀資訊,採樣數越大數據越精準,理想值就會"趨近於"相等 3.光速在曲面上仍是光速,所以螞蟻得知的光速相等;在螞蟻位置測得的瞬間光粒子會是該螞蟻視覺範圍中的直線,但整體視覺是否為連續光就很難說,要看螞蟻眼睛的分辨率與光之間的空間扭曲程度;因為光以曲面為介質傳開是外部視角,從螞蟻看來特定光粒子或許會比較像是人類撞鬼一樣莫名出現又消失忽隱忽現,但假設螞蟻眼睛分辨率不高或是有腦捕功能就有可能看到穩定的連續光源。由此可以大膽假設兩個不同的站在一起看到的光應該不是同一批從太陽出貨的(?) 4.我們只能以某一數據做為尺,將其餘數據拉伸為符合該尺作為基準的統計資料,藉以模擬出空間的彎曲狀況,但我不禁懷疑,這樣一來,要是該尺是錯誤或變形過大的(因為高維度的誤差會較低維度的誤差更大),那豈不是會得出畸形的空間地圖嗎? 保險的方式就是讓AI使用量子計算機計算以所有資料個別為尺的統計資料,那麼求出的答案將會趨近於正確 (所以耶穌才會降維來看看如何用人類的維度去活出美善) 抱歉我文組路過... 有錯請噴小力點
@fantasyyf
@fantasyyf Жыл бұрын
这个第三点哈 蚂蚁作为观测者应该无法区分光线弯曲,可能需要借助类似ligo那样精确校准的时间表来确定接受到同一束光的时间差来判断(假设这个光是包涵信息的 比如颜色或频率)
@陈冲-m4x
@陈冲-m4x Жыл бұрын
我觉得哪个是弯曲和直线本来就不是绝对的。光传播路径可以定义为直线。圆周也能定义为直线。
@陈冲-m4x
@陈冲-m4x Жыл бұрын
一个是纯粹理念直线。光传播路径是具体路径。理念和具体路径是两回事,二者不具备可比性。只是把光线定于为直线。
@Eiman00
@Eiman00 Жыл бұрын
光速的測量,這題是蠻有趣的概念,從發光點到螞蟻,是第一次光源,這點測知光速,但要回覆原點嗎? 光速是怎麼基礎去測,這個實驗很多,在這邊我蠻好奇答案的。
@陈冲-m4x
@陈冲-m4x Жыл бұрын
@@Eiman00 测量光速必须通过光的来回反射。因为测量光速必须测量时间。而时间信号传递最快就是通过光的反射。目前无法测量单程光速。也就是人类无法测量真正的光速。
@蔡藥師的思想天地
@蔡藥師的思想天地 Жыл бұрын
好期待這些問題的答案,都是自己摸索廣相百思不得其解的問題
@WENRUAY
@WENRUAY Жыл бұрын
聰明一點的一般人,都能在現實生活與歐氏幾何之間發現矛盾,而黎曼找到如何面對它,處理它,計算它的方法. 黎曼早了五十年替愛因斯坦鋪路,愛因斯坦要多花十幾年,並與同學合作,才能解決廣義相對論的問題.
@gupuao
@gupuao Жыл бұрын
太棒了,谢谢老师
@ohuo89
@ohuo89 Жыл бұрын
赵老师诚意满满,麻烦您安排个斗内管道,希望可以表达我们作为观众的诚意.
@-ray-ql8zi
@-ray-ql8zi Жыл бұрын
这个讲解再加上这个软件的配合,简直相得益彰
@oneli8492
@oneli8492 9 ай бұрын
没出几期都是精品!
@jolin3696
@jolin3696 Жыл бұрын
先贊後看~好運不斷
@Lee-sr9el
@Lee-sr9el Жыл бұрын
老师 你的发型没有以前短发的时候好看
@user-48763
@user-48763 Жыл бұрын
7:44 不懂為什麼周長是外嵌,但這裡的曲線卻是內蘊。有什麼不一樣嗎?
@蔡藥師的思想天地
@蔡藥師的思想天地 Жыл бұрын
分享我的淺見,參考就好 7:09講到的周長,是以圓心跟半徑得到的結果,而圓心以及半徑並不存在於球面之上,因此周長的概念也不存在於球面 再換句話說就是,你能夠當一個球面上螞蟻的前提下,知道你所走的那個曲線是周長嗎?如果不行,就表示這個概念必須要更高維的空間來定義,那就是外嵌
@user-48763
@user-48763 Жыл бұрын
@@蔡藥師的思想天地 噢!感覺應該就是你說的這樣,感恩。
@simonyen
@simonyen Жыл бұрын
有趣的視頻👍👍👍
@明心-w6x
@明心-w6x Жыл бұрын
人要惜缘。有没有缘分啊?有。缘分在哪里呢?缘分就在你的身边。今天你们跟着师父,是有师徒缘;你们学佛,是有佛缘;你们大家都是佛友,那就是有佛友缘,所有的一切都是靠着缘分来维持的。 *不针 对任何人和事,仅分享善言,感恩宽容!
@s901510011
@s901510011 Жыл бұрын
知識看得見,科學更簡單
@chenwilliam5176
@chenwilliam5176 Жыл бұрын
所謂「彎曲」,和「曲率不為零」同義 🤗
@rayc7269
@rayc7269 Жыл бұрын
高維空間好難懂😮😮😮感謝老師細心講解
@freedomist116
@freedomist116 Жыл бұрын
如果老师这样教数学和物理,绝对会教出好多数学家和物理学家
@shunruzhang4237
@shunruzhang4237 Жыл бұрын
懂和做xx家是差很远
@SHYW77286
@SHYW77286 Жыл бұрын
原則時間不夠 這教材起碼要準備2禮拜時間 因此實務上 準備可黑板簡化較多 不然直接推介此視頻 這就是作這種高品視頻的偉大+1
@kaasa6151
@kaasa6151 Жыл бұрын
微积分?
@自我表达
@自我表达 Жыл бұрын
突然高产,非常棒!
@noname-zf1rh
@noname-zf1rh Жыл бұрын
先讚
@erichuang1844
@erichuang1844 Жыл бұрын
赵老师终于更新了,赶紧拿出小本本
@szteng
@szteng Жыл бұрын
中国赵巍先生太少了。你不需要什么奖来证明自己,自己站在知识的高点,感到的是自身强大,其他东西都很渺小。
@M2y0t2h4e7
@M2y0t2h4e7 Жыл бұрын
等到更新了,赞一个
@KJbaby9121
@KJbaby9121 Жыл бұрын
好帥喔這男老師
@chenwilliam5176
@chenwilliam5176 Жыл бұрын
一個二維平面上所有點的曲率為 0 ❤將 將該二維平面彎曲成一個二維曲面,其上 點的曲率不為 0 ❤ 將二維平面推廣至三維空間 、四維時空, 物質導至周圍曲率不為 0, 質點循最短路徑運行 ❤ 行星繞太陽,不是因為物體間相互的吸引力,而是根據上述規則運行 ❤ 所以,gravity 不是物體間相互的吸引力 ❤
@shawnzhsh
@shawnzhsh Жыл бұрын
厉害了,赵巍!
@Eiman00
@Eiman00 Жыл бұрын
看完這視屏,有得到我想解決的一個問題,但還有另一個問題還在想。 在這邊我們可以思考三維、二維、一維。 但我在想的剛好是怎麼去解釋四維。 用這理論去思考,剛好就解決了我本來思考的類似街頭藝術的路面3D立體畫。 正面看或看上視圖的時候,這些立體圖都是變形的,但經過一個斜角去看,就變成立體了。 這視屏剛好講到理論基礎。 可以用二維的角度,來解釋三維的空間概念。 再反推三維的概念,去理解二維的畫法,就像是3D路邊的畫一樣。 但我一直有個問題,在這樣扭曲的二維狀態,可以用這個理論去解釋,真的太棒了。 但是三維的狀態下,怎麼解釋四維。 是不是也要扭曲三維和四維的某個角度,才可以順利解釋四維。 就像是那個電影,三和四之間,有個整數。 這個整數雖然是一個電影概念,但是不是一個視覺角度。 或是一個泡沫集合的多重角度,還是期待有視屏的專業解釋。
@化化-w4p
@化化-w4p 11 ай бұрын
非常棒
@inulloo
@inulloo Жыл бұрын
深入浅出!👍
@YuanLiu1965
@YuanLiu1965 Жыл бұрын
讲得好,但是有点难,能不能再展开讲仔细点。还有,叮叮当当的背景音能不能去掉,没必要。视频动画做得非常好。
@kobedirk
@kobedirk Жыл бұрын
@9:21 應該是積分概念吧...
@waynechang630
@waynechang630 Жыл бұрын
终于更新了!
@dunchiban
@dunchiban Жыл бұрын
烧脑呀
@renmin114
@renmin114 Жыл бұрын
这期信息密度太高了
@jianchundeng3622
@jianchundeng3622 Жыл бұрын
虽然理解有点困难 但是 讲得挺好
@xiaohu517
@xiaohu517 Жыл бұрын
谢谢分享 . . . 辛苦了 . . .
@simonyang6404
@simonyang6404 Жыл бұрын
强烈建议换个背景音乐或者去掉啊。一遍遍循环实在折磨。但又放不下这么精彩的内容,只能强忍😂
@wenxuanpeng6057
@wenxuanpeng6057 Жыл бұрын
看不太懂,因为一直欧氏几何思维框住了。极坐板,复变函数,度规,能理解概念,但无法运用起来分析问题,切换到内部视角去看待。
@14209eric
@14209eric Жыл бұрын
精彩!
@李之风
@李之风 Жыл бұрын
没想到更新了 年庚啊这是
@nameany6919
@nameany6919 Жыл бұрын
干货不在多
@johnmo7022
@johnmo7022 Жыл бұрын
蚂蚁就生活在三维空间。没有什么二维空间一说。维度是力,具体讲就是电磁力和引力等作用的结果。看高维空间一定要能借助我们尚未了解的力。
@neoliu3125
@neoliu3125 Жыл бұрын
硬核科普,赞
@Lao_Wang369
@Lao_Wang369 Жыл бұрын
哈,这时间更新……😁
@chRQL309
@chRQL309 Жыл бұрын
說好的過兩天😂
@helloworld1433
@helloworld1433 Жыл бұрын
竟然留作业!你以为这期我听懂了吗?
@Mr.WuTong
@Mr.WuTong Жыл бұрын
很精彩
@cookie.c
@cookie.c Жыл бұрын
看得不過癮阿
@jedywei
@jedywei Жыл бұрын
張量 tensor
@Abrahampoynter
@Abrahampoynter Жыл бұрын
因為他知道科學跟所謂的神學脫離不了關係~都是宇宙運行的法則
@a1tse191
@a1tse191 Жыл бұрын
🎉🙏🏻
@RH-ms5ui
@RH-ms5ui Жыл бұрын
每个字我都懂
@洪星榮
@洪星榮 Жыл бұрын
👍
@盛峰-i8p
@盛峰-i8p Жыл бұрын
不还是用欧式几何的公式去构建黎曼几何。这么玄乎,黎曼几何无非是一种计算曲面的方法罢了。
@Blue02235
@Blue02235 Жыл бұрын
头发应该理一下了
@junsuineko
@junsuineko Жыл бұрын
兩天 😅
@张三-i9b7m
@张三-i9b7m Жыл бұрын
我靠 不枉此生系列
@art-543
@art-543 Жыл бұрын
去看了黎曼ji'he3 的科普回头看这个才知道说什么
@changszuchin856
@changszuchin856 Жыл бұрын
廣義相對論是瞎猜的
@miantiaosi3366
@miantiaosi3366 Жыл бұрын
1. 它不知道 2. 相同 3. 光速不变 4. 直线? 题目太难了
@vicentjack235
@vicentjack235 2 ай бұрын
你是赵薇😂
@worldking5059
@worldking5059 Жыл бұрын
胡說八道,如果時空彎狀態是重力,那什麼力來引導物質繞圈在彎曲時空裡?!所以應該是重力就是重力,只是重力場會形成彎曲時空!!
@Weston_Tetsuo
@Weston_Tetsuo Жыл бұрын
你的聲音好聽
@jolin3696
@jolin3696 Жыл бұрын
就這樣???沒了.............................................................................................................................................................
@rickykuok
@rickykuok Жыл бұрын
蟻是立體生物,甚麼2維1維,那些理論都是廢話
@scarlettwang7277
@scarlettwang7277 Жыл бұрын
一个都回答不出来
@freedom-kz2ur
@freedom-kz2ur Жыл бұрын
要长脑子了
几何宇宙3 - 平行线永远相交
10:01
眼见为识
Рет қаралды 40 М.
Trick-or-Treating in a Rush. Part 2
00:37
Daniel LaBelle
Рет қаралды 35 МЛН
😜 #aminkavitaminka #aminokka #аминкавитаминка
00:14
Аминка Витаминка
Рет қаралды 2,8 МЛН
Random Emoji Beatbox Challenge #beatbox #tiktok
00:47
BeatboxJCOP
Рет қаралды 54 МЛН
Osman Kalyoncu Sonu Üzücü Saddest Videos Dream Engine 275 #shorts
00:29
揭秘引力不存在的原因
17:46
眼见为识
Рет қаралды 305 М.
科學的盡頭是什麼?來聽費曼如何預測物理學的發展!
6:38
Timothy Huang 物入奇途
Рет қаралды 8 М.
几何宇宙!蚂蚁眼中的高维世界
13:12
眼见为识
Рет қаралды 46 М.
看完这期,你就“懂”量子力学了!
14:21
空间一号SpaceOne
Рет қаралды 999 М.
我把特斯拉涡轮机搞炸了
10:28
眼见为识
Рет қаралды 34 М.
“影分身之术”!训练50亿次的AI能有多智能
10:19
眼见为识
Рет қаралды 141 М.
Trick-or-Treating in a Rush. Part 2
00:37
Daniel LaBelle
Рет қаралды 35 МЛН