Jacobian prerequisite knowledge

  Рет қаралды 244,614

Khan Academy

Khan Academy

Күн бұрын

Пікірлер: 72
@johnbrownell1
@johnbrownell1 5 жыл бұрын
My lin alg prof quite literally believes that every 3blue1brown visualization instantly pops into every students head the first time they see a numbers stacked inside of [ and ]
@JoseRojas2
@JoseRojas2 4 жыл бұрын
Thanks for taking the time to make this... it is clear, concise and allows the watcher to really understand linear transformation.
@bradzoltick6465
@bradzoltick6465 4 жыл бұрын
Your videos on the Jacobian matrix are excellent. Clear, insightful and beautifully presented. Thank you.
@snehsatyam7072
@snehsatyam7072 6 жыл бұрын
3blue 1brown..... hey man it all makes sense.... thanks
@pooppooper4252
@pooppooper4252 3 жыл бұрын
For people who are confused: 4:05 the green vector in the deformed grid/world is DEFINED as [1,0] by people thinking/working with that grid! "We" multiply "their" understanding of a basis vector with the transformation matrix to translate their definition of a basis vector to our language where our basis vector look completely different! The transformation matrix helps us to understand that their definition of a basis vector like [1, 0] should be understood as [2, 1] in our definition of the world! If you wanna make "them" understand what "we" mean when we talk about a basis vector [1, 0] you have to multiply our (basis)vector with the inverse of the transformation matrix to translate "our" definitions of the world to "their" definitions of the world.
@LaureanoLuna
@LaureanoLuna 5 жыл бұрын
It could be convenient to address a possible confusion, for it would seem that in substituting the new, slanted grid for the old, we are not transforming e.g. (1, 0) into (2, 1), as claimed, but vice versa, since on the new grid, it is (1, 0) what formerly was (2, 1). I suggest: "note we are not changing the basis vectors so that the same old vector (1, 0) gets the new name (2, 1) but so that the same old name (1, 0) gets the new vector; this is required by the fact that L(x, y) = xL(1, 0) + yL(0, 1), that is, we must have the same quantities x and y of the transformed basis vectors L(1, 0) and L(0, 1)".
@fatemehentezari9779
@fatemehentezari9779 4 жыл бұрын
Thank you sooooooo much. You are the best math tutor ever. Thank you for doing such a great job. Your videos are so helpful. They really make a big difference in my studies.
@sakhawat3003
@sakhawat3003 5 жыл бұрын
Man! I dont know who you are but that was truly enlightening .
@giuseppeinfantone4952
@giuseppeinfantone4952 3 жыл бұрын
3b1b
@ferb1rahert
@ferb1rahert Ай бұрын
wow I am enlightened on linear properties of transformations and transformations in general. Gonna watch your full series on those after the exam. Just wow
@ferb1rahert
@ferb1rahert Ай бұрын
modifying the whole space and changing the basis vectors with that transformation is a hella nice idea to think of it as
@zukofire6424
@zukofire6424 2 күн бұрын
Thank you Prof. Sanderson and Khan academy!
@741231478963
@741231478963 8 жыл бұрын
Are you the 3Blue1Brown guy?
@gideonbuckwalter4128
@gideonbuckwalter4128 8 жыл бұрын
He is!
@niroshas1790
@niroshas1790 6 жыл бұрын
Even I got the same doubt. but sir ur amazing really
@Originalimoc
@Originalimoc 6 жыл бұрын
This voice makes me excited 😂
@ozzyfromspace
@ozzyfromspace 7 жыл бұрын
Random video in my feed, but now I'm interested :). On to the Jacobian, I guess.
@everythingaccount9619
@everythingaccount9619 3 жыл бұрын
Didn't realize this was Khan Academy until almost towards the end haha.
@aniktahabilder2518
@aniktahabilder2518 5 жыл бұрын
you are the best teacher.
@bobhohi
@bobhohi 6 жыл бұрын
Thank you professor Khan
@chejado
@chejado 8 жыл бұрын
Did we just witness falling down the Golden Spiral? I noticed Fibonacci's sequence in your equations. Starting @ 3:07-ish *Edit - Pascal's Triangle as well, hmm?
@elbay2
@elbay2 8 жыл бұрын
Very well presented!
@Steger27
@Steger27 5 жыл бұрын
Question: why does the multiplication of two jacobi matrix, which are functions of one another, equal the identity matrix?
@evertonsantosdeandradejuni3787
@evertonsantosdeandradejuni3787 3 жыл бұрын
Do you know why by now?
@justinward3679
@justinward3679 8 жыл бұрын
MORE MATH MAH BOIS!
@sourishwaikar1998
@sourishwaikar1998 2 жыл бұрын
This is absolutely beautiful ❤️
@sunamisbisetramirez
@sunamisbisetramirez 25 күн бұрын
This si te best way to learn🎉
@yixuan9213
@yixuan9213 Жыл бұрын
Great teachers, thanks ❤
@minkyoungkang5451
@minkyoungkang5451 4 жыл бұрын
What a lecture!
@danialdunson
@danialdunson 5 жыл бұрын
hell yeah i love this guy....is there a playlist of every video with this 3b1b dude
@edwardarruda7215
@edwardarruda7215 3 жыл бұрын
Covered this in calc 3 without linear algebra
@user-nh1yz5vo4o
@user-nh1yz5vo4o 6 жыл бұрын
you are awesome, 3blue1brown
@Wam_somp
@Wam_somp Жыл бұрын
I really wish i'd seen this when i was actually taking linear algebra 😭
@rotnakleugim
@rotnakleugim 6 жыл бұрын
what software is used for visualizing transformations?
@jithinpoliyedathmohanan7237
@jithinpoliyedathmohanan7237 5 жыл бұрын
KIDS just don't waste your time in school ...skip those classes and go swimming or play soccer..when you are home watch these videos.. Trust me, I wish I should have done that ,instead of wasting all those hours mugging up who knows what boxes full of numbers and derivatives.
@zakariabaknine7538
@zakariabaknine7538 7 жыл бұрын
Mind-blowing, pretty sexy graph explaining!
@aussiedog5221
@aussiedog5221 Жыл бұрын
It's Grant....3Blue1Brown! I guess before he got famous.
@sidaliu8989
@sidaliu8989 6 жыл бұрын
Does anyone have the URL of playlist of this whole series? Thanks a lot.
@VishalSharma16
@VishalSharma16 6 жыл бұрын
khanacademy.org
@hazelpedemonte4464
@hazelpedemonte4464 5 жыл бұрын
kzbin.info/www/bejne/jJ7JhYuMfJ6GZrc
@peasant7214
@peasant7214 6 жыл бұрын
where is the next video?
@pb48711
@pb48711 4 жыл бұрын
Shouldn't the first row of the matrix read " 2 1" and the second row read "-3 1". I am confused with why you conflated the x and y coordinates.
@isavenewspapers8890
@isavenewspapers8890 11 ай бұрын
The landing spots for the basis vectors go in the columns, not in the rows.
@tigerspidey123
@tigerspidey123 3 жыл бұрын
so this is eigen vector and linear transfom I assume...
@GOODBOY-vt1cf
@GOODBOY-vt1cf 4 жыл бұрын
thank you so much
@user-or7ji5hv8y
@user-or7ji5hv8y 4 жыл бұрын
Thank you
@mkhex87
@mkhex87 4 жыл бұрын
Isnt this just the Gradient transpose?
@mkhex87
@mkhex87 4 жыл бұрын
With rows for conponent functions?
@user-pb4jg2dh4w
@user-pb4jg2dh4w 5 жыл бұрын
what should I say.. god bless you
@gopalakrishnamraju9321
@gopalakrishnamraju9321 5 жыл бұрын
Why 3blue... Is here?
@kutuboxbayzan5967
@kutuboxbayzan5967 3 жыл бұрын
He began to use Manim Cast
@particleonazock2246
@particleonazock2246 4 жыл бұрын
Jacobean was from the reign of King James.
@eudemathematicaimmaths9264
@eudemathematicaimmaths9264 5 жыл бұрын
Hm have a further nice journey. Tnx
@CycWins
@CycWins 8 жыл бұрын
Nice video, but did you ask 3Blue1Brown permission to use his animations?
@aeroscience9834
@aeroscience9834 8 жыл бұрын
That is 3blue1brown
@romanemul1
@romanemul1 7 жыл бұрын
he won a contest of a khan ac. so yes. These lectures were made specially for K.A.
@mjtsquared
@mjtsquared 7 жыл бұрын
Be he IS 3Blue1Brown!
@leelomchen3119
@leelomchen3119 2 жыл бұрын
молодец, Я вас люблю
@myelinsheathxd
@myelinsheathxd 4 жыл бұрын
THX!
@isaacliu896
@isaacliu896 6 жыл бұрын
Really better if you understand the linear algebra... But fair job anyway
@cashphattichaddi
@cashphattichaddi 7 жыл бұрын
Dope!
@roonilwazlib8137
@roonilwazlib8137 4 жыл бұрын
Ayyy its grant sanderson!!!
@hussainbhavnagarwala2596
@hussainbhavnagarwala2596 2 жыл бұрын
sounds like grant from 3b1b :D
@afterbunny257
@afterbunny257 6 жыл бұрын
3 Blue 1 Brown guy, yes yes yes!!!!!!!!!!!!!
@EggPuffsEdge
@EggPuffsEdge 5 жыл бұрын
Grant I find you
@DeisonPreve
@DeisonPreve 8 жыл бұрын
cool
@kina4288
@kina4288 3 жыл бұрын
dont know why people shower accolade on your explanation, it is messy and confusing.
@connorshea9085
@connorshea9085 3 жыл бұрын
69th video nice
@user-pb4jg2dh4w
@user-pb4jg2dh4w 5 жыл бұрын
wwoooooooowwwwwwww
@johndesmond1260
@johndesmond1260 6 жыл бұрын
I have watched over 100 Khan videos and this these are the first I have disliked. Using the 2 by 1 x, y matrix after the conversion matrix, is very confusing. It makes sense when you multiply by the basis vectors. Also flying the x y matrix to the left of the conversion matrix is really confusing.
@rickymishra2915
@rickymishra2915 Жыл бұрын
🙏 Nothing Special..? 🪔
Local linearity for a multivariable function
5:23
Khan Academy
Рет қаралды 81 М.
What is Jacobian? | The right way of thinking derivatives and integrals
27:14
“Don’t stop the chances.”
00:44
ISSEI / いっせい
Рет қаралды 62 МЛН
REAL or FAKE? #beatbox #tiktok
01:03
BeatboxJCOP
Рет қаралды 18 МЛН
It works #beatbox #tiktok
00:34
BeatboxJCOP
Рет қаралды 41 МЛН
Oxford Calculus: Jacobians Explained
29:25
Tom Rocks Maths
Рет қаралды 258 М.
Local linearization
9:13
Khan Academy
Рет қаралды 58 М.
Change of Variables and the Jacobian
13:08
Serpentine Integral
Рет қаралды 319 М.
The Lagrangian
12:28
Khan Academy
Рет қаралды 496 М.
The Jacobian matrix
6:22
Khan Academy
Рет қаралды 517 М.
The determinant | Chapter 6, Essence of linear algebra
10:03
3Blue1Brown
Рет қаралды 3,9 МЛН
Stokes' theorem intuition | Multivariable Calculus | Khan Academy
12:12
Why is the determinant like that?
19:07
broke math student
Рет қаралды 187 М.
The Jacobian Determinant
8:53
Khan Academy
Рет қаралды 212 М.
Meaning of Lagrange multiplier
10:08
Khan Academy
Рет қаралды 243 М.