In class this made me experience something which I would define as "brain death." You're my resuscitation, Sal.
@IamFilter948 жыл бұрын
I'm so Stoked my dudes
@holycrapitsachicken7 жыл бұрын
Turn round for what?
@agrajyadav29512 жыл бұрын
@@holycrapitsachicken curl it man
@devikabsree80876 жыл бұрын
This is the most outstanding explanation of Stoke's theorem. So clearly explained. Thank you so much.
@gabeham75322 жыл бұрын
cap
@lambda5949 Жыл бұрын
cap
@panikostiritas52165 жыл бұрын
Crazy how 3 hours of lectures amounted to me retaining 0 knowledge. Then 10 minutes of this and I understand it like crazy
@Edgarisftw4 жыл бұрын
Just goes to show there is a difference between teaching and teaching. Many students, myself included, learn much more from these kinds of videos with a good visual compared to a fast talking teacher stressfuly cluttering on the board.
@rowanyardley1781 Жыл бұрын
@@Edgarisftw also probably help that people have had that previous amount of teaching. This 'learning' essentially amounts to consolidating some misconceptions to most people
@sudarshanseshadri55043 жыл бұрын
Hours of reading the book and listening to prof lecture and this 10 mins was more effective than all that. And it’s not like Sal had the online video advantage - my prof also recorded and posted his lecture. Sal really has a gift.
@kal599112 жыл бұрын
30% of my exam for university 2 weeks ago was on stokes and greens theorem. Thank you so much for these videos :)
@EldonSchoop12 жыл бұрын
When I took multivariable calculus, I never got an intuitive understanding of Stokes' Theorem. Now I do. Thanks, Sal. :)
@coco_jae8 жыл бұрын
wow... finally, i understand the stoke's theorem.
@bawol-official3 жыл бұрын
My final exam is in a week, I just got assigned homework for the sections on Vector Field, Green’s,Stokes, and Divergence theorem . Pray for me.
@amandaferguson69012 жыл бұрын
Wow I came here for Stoke's Theorem and I get an actual explanation of curl also
@sbullock29768 жыл бұрын
Wow. The simplicity of this explain blew my mind! Great video.
@lordfieldsworth5952 ай бұрын
Never have I understood this so well. Khan Academy strikes again
@ParthPaTeL-wm3kt4 жыл бұрын
This is best video about stokes theorem in whole KZbin, Great, thanks dude
@robromijnders9 жыл бұрын
Sal, you're a genius. Thank you!
@battleangelgally754811 жыл бұрын
Oh My Goodness! All those equations have suddenly started to make so much sense... Thanks a lot Sal!!!
@elizabetheckenrod22037 жыл бұрын
And now I can pass my final... Bless you, Khan Academy!
@carmelpule84938 ай бұрын
I am now an old man and over 65 years ago I saw it all in this manner, The Curl is the amount of circulation behaviour around the smallest element dxdy. So if we total all the circulations on the elemental area, we find the circulation around the outer contour. This is no different from finding the total mass of a rod, If we know the mass per unit length then we integrate along the length to find the total mass. I believe that the following " activities have similar/related building blocks/ logic to produce the tacit differences. . 1. Cauchy Riemann relations 2. The Grad operator. 3. The curl operator. 4. the Divergence operator. 5 . Green's Curl theorems of circulation 6. Green's Divergent theorem of flux 7. Stoke's Curl theorem involving circulation 8. Divergence theorem involving divergences through volumes/surfaces, I always thought that students should see the close links there are in how these derivatives are combined to produce their " engineered" activity. dU/dx dU/dy dU/dz dV/dx dV/dy dV/dz dZ/dx dZ/dy dZ/dz and reduced to two dimensions dU/dx dU/dy dV/dx dV/dy .
@sunset2.006 ай бұрын
Sal's voice is reassuring.
@bijoythewimp28543 жыл бұрын
My college didn't reach here. I am way ahead. I lost my faith in teachers long time ago. Sal and other youtube teachers are my only hope and I am contended to have them as my virtual teachers.
@mmzzcc212 жыл бұрын
I wish I could have seen this video when I was at the university! Thanks Sal!
@Virtualexist4 жыл бұрын
I get so happy with him when the vector fields and path are in the same direction !!!
@robertmatuschek913 Жыл бұрын
reasoning for dotting with N. …We do this because curl is a vector whose direction is orthogonal to the Counter clockwise rotation and the dot product calculates the amount of curl in S
@MeshalWinehouse5 ай бұрын
I’m on second year as a physicist 😮💨 can’t wait to graduate 😭😭 thanks for ur help.
@larrymendel111 жыл бұрын
the line integral of the vector field along C is the summation of all the curls on the surface
@ananthakrishnank3208 Жыл бұрын
This helps. For math and engineering education, visual intuition is minimal one should get.
@SourabhTiwari629 жыл бұрын
Crystal clear..Thanks
@अण्वायुवरीवर्त5 жыл бұрын
Okay then tell me why would u take 0 when field is Orthogonal to our line integral??? I may be late but it was crystal clear to u
@अण्वायुवरीवर्त5 жыл бұрын
@Devang Trivedi Ikr, I was trying to tell him that this wasn't a crystal clear explanation, it was vague. Even sal mentioned it
@shivamsharanlall6725 жыл бұрын
@@अण्वायुवरीवर्त but it is all clear. There is no vagueness....
@अण्वायुवरीवर्त5 жыл бұрын
@@shivamsharanlall672 he just gave an example n I bet one example isn't enough
@chemmaz4 жыл бұрын
@@अण्वायुवरीवर्त you don't have to understand stokes' theorem to answer your question. simply knowing what the dot product mathematically implies is enough.
@chinkostik12412 жыл бұрын
Sal made me pretty stoked about Stokes' Theorem
@wagsman99995 жыл бұрын
Love the way Mr. Khan explains things.
@thReipoints11 жыл бұрын
anybody else has an upcoming exam and is cramming the night before?
@adhamsalama43365 жыл бұрын
Yep.
@Fiendnat1385 жыл бұрын
Wish me luck, test is on Thursday:>>!!!
@Ydmaster5 жыл бұрын
@@Fiendnat138 hope you did well because I did really bad on my second midterm
@22Tech5 жыл бұрын
yes but 6 years later
@oneinabillion6544 жыл бұрын
My exam for calc3 in 2-3years. I'm studying this for field theory next semester. I dont know why the timetable is like that LOL
@Prometeur2 жыл бұрын
Incredible explanation, Sal is a hero
@cmprice116 жыл бұрын
This video made it click. Thank you!
@scp_at_iitbАй бұрын
Love this explanation. Thanks
@epezzulli116311 жыл бұрын
Absolutely Great explanation.
@KisekiTim11 жыл бұрын
Great video. Very intuitive and easy to understand for people entering the field.
@shivamsharanlall6725 жыл бұрын
Now this is the physical explanation of a mathematical process.
@DushyanthEdadasula7 жыл бұрын
Khan, your way of teaching is awesome!!😍😍😍
@PartVIII12 жыл бұрын
thank you so much Sal. im really enjoying these vector calculus videos
@tuanthanhtruong40754 жыл бұрын
Wow This helped alot!!! Thanks!!!!
@rafainfernal6 жыл бұрын
Best geometrical representation of this concept
@messedup95444 жыл бұрын
this really helps simplify the concept.THANK YOU
@adityaprasad4655 жыл бұрын
In the fifth example, if the direction had switched an odd number of times, the curl might still be zero, but we would have gotten a positive result for the line integral. So this perspective is neat but has serious pedagogical limitations.
@GOODBOY-vt1cf4 жыл бұрын
thank you so much
@wooobooo112 жыл бұрын
insane mouse control!! o.O
@abhishekravindra40086 жыл бұрын
CharlesWorth its one of those bamboo tablets lol
@lidyasolomon55574 жыл бұрын
@@abhishekravindra4008 screaming lol
@craigcoates62476 жыл бұрын
This man is a god
@Citius19744 жыл бұрын
Wonderful! I've been fascinated by Stokes' Theorem since reading about it in Maxwell's Treatise on E&M (Vol 1 Article 24)...This video is an excellent intuitive explanation!!
@laurabeltran3746 Жыл бұрын
Thank you this was super clear!
@sandracordoba6090 Жыл бұрын
Just brilliant!
@meme_engineering45215 жыл бұрын
You've got excellent knowledge and teaching skills👍👍👍
@muhammadumar97534 жыл бұрын
Thank you so much ❤️💕
@yichizhang7959 жыл бұрын
Great explanation, thanks
@funkymaniak8 жыл бұрын
Absolute gold
@AS_tutor Жыл бұрын
It seems like fun) Thank you!
@bhaveshohal33905 жыл бұрын
That was so great.....Thank You.....
@jaswanthtalada.10 ай бұрын
thank you
@astherphoenix96486 жыл бұрын
thanks, it's a good way to visualise
@AsiaCrasie7 жыл бұрын
I've got a question: in that top right diagram, what if the vector field in the middle of the surface curled in the opposite way as those on the outside (aka spin clockwise on the inside of the surface and counter clockwise at/near the line integral)? Would the opposing curls eventually cancel out and give a 0 for the line integral? If not (which the theorem suggests), does this mean that, during the transition between curls, the net curl in between the two directions gives a net counterclockwise curl?
@gurpritsingh23556 жыл бұрын
Absolutely stunning video... Great explanation...
@purpk8612 жыл бұрын
i LOVE your voice!
@AjayPatel-te4kb5 жыл бұрын
Tq so much sir🙏
@sanchayadari8 жыл бұрын
Awesome It made my day !
@krkarthikeyan10 жыл бұрын
Fantastic is an understatement
@odvutmanush32343 жыл бұрын
Omg. Thanks a lot Sal.
@GBabuu5 жыл бұрын
very well explained
@jeffaschwarz12 жыл бұрын
Where are these videos? I get emails when new Khan videos are posted on youtube, but it is not in any playlist on the site.
@abhi99ps12 жыл бұрын
Ya, I also realised that. They aren't on his site at all. I also found that some of his videos are on the channel "sal32458" instead.
@moodaahmed73089 жыл бұрын
amazing mate just amazing
@tjfirhfjejUTH2410 жыл бұрын
great video thanks
@ChristopherMarkusLacapra10 жыл бұрын
thanks
@sukursukur36174 жыл бұрын
Look through Aleph 0 explanation of this subject
@RawdaAHafez2 жыл бұрын
That's amazing
@suryaprakashsahu614210 жыл бұрын
good explanation
@সুমিতকর্মকার3 жыл бұрын
May I know which board or the background is used to write all those stuffs?
@Podotoderoso12 жыл бұрын
Best Enchantress EU.
@IHeartViHart12 жыл бұрын
HALP! I have no idea what's going on! Suppose I should actually watch the preceding videos, but it's more exciting like this. xD Knowing kills the suspense.
@drtamiz Жыл бұрын
Why do we dot it with the normal and not the tangential?
@ztitan6911 жыл бұрын
thank you!!!
@andrerossa85535 жыл бұрын
great. tks
@kuraignjenge40155 жыл бұрын
yaaa this is helpful
@Headrum11 жыл бұрын
Your voice sounds considerably more wise in this video.
@foundede12 жыл бұрын
AUTODIDACTS RULE!
@abhi99ps12 жыл бұрын
Which playlist is this in?
@Macoranino10 жыл бұрын
thanks a lot
@RougeSamurai777 жыл бұрын
@Gavin Malus Well said.
@hamzaabbasi86198 жыл бұрын
Great !!
@abhi99ps12 жыл бұрын
Its already 8 days since this video came about and its still not on the Khan Academy site. Also, this is not in the calculus playlist. Also, some of these videos are on a different channel instead (sal32458).
@PlayMadness12 жыл бұрын
I knew some of those words!
@macmos111 жыл бұрын
I just finished cal II. I can't wait to learn cal III :)
@rj-nj3uk7 жыл бұрын
what if the curl is in middle but on sides fields cancel the curve traversal to have net 0 integration of field throughtout the curve.
@vinaychintu9812 жыл бұрын
superb
@Jiwan0112 жыл бұрын
Hi, I'm good at Mirror's Edge :)
@kamelalboaouh9595 Жыл бұрын
how come the "contour" is treated as a surface "boundary"??
@nmakarowski5 жыл бұрын
i love it
@anteil9510 жыл бұрын
Very good explanation, however there's one thing confusing me. Looking at the bottom right surface, if you follow the border, the vectors on the border cancel each other out. But what if there is still one set of vectors left within the surface, pointing to the right (like khan drew it)? What if these vectors didn't find any complementary ones to cancel out with? Adding all the vectors together would thus not equal zero, although adding the ones on the border would. There are several other examples which would contradict Stokes' theorem. Can somebody explain please?
@benham1189 жыл бұрын
That's not quite the way it works because the vector field on the surface is continuous and so the vectors as seen in the diagrams wont actually cancel out in a discrete sense.
@inteusproductions9 жыл бұрын
Munzu You look at each case separately, not to see if both of them satisfy it at the same time.
@SadatHossain013 жыл бұрын
King Salman Khan 👑👑
@agrajyadav29512 жыл бұрын
10:22 came outta nowhere
@SneakyJeffZ8 жыл бұрын
is n just a normal vector or does it have to be a UNIT normal vector?
@daviddavidson10908 жыл бұрын
unit. That's why it has a hat and not an arrow.
@KumarHemjeet6 жыл бұрын
The voice is of salman khan (founder of khan acaddemy).
@NightbladeNotty10 жыл бұрын
when you are referring to the curl of F you mean the Gradient x(cross) F right?
@andrewolejarz529310 жыл бұрын
Yes
@NightbladeNotty9 жыл бұрын
Gavin Malus ok?..
@FitnessRegiment9 жыл бұрын
Gavin Malus Khan Academy ban this guy from your channel please!
@FitnessRegiment9 жыл бұрын
are you actually stupid? I'm german
@yichizhang7959 жыл бұрын
Gavin Malus You ignorant racist
@TheMrFrontera12 жыл бұрын
Haha i found your comment to be hilarious! I know the slight familiarity. Like you were sitting in class but didnt know what the hell was going on