Canonical Decomposition of Controllability and Observability (Dr. Jake Abbott, University of Utah)

  Рет қаралды 31,916

JJAbbottatUtah

JJAbbottatUtah

Күн бұрын

Пікірлер: 20
@ajayjoseph4626
@ajayjoseph4626 7 жыл бұрын
it would have been useful if you had made a playlist of control system lessons. thanks for the videos anyway
@EngBandar1
@EngBandar1 7 жыл бұрын
You can find the playlist in their website. www.telerobotics.utah.edu/index.php/StateSpaceControl Thank me later.
@mohamadmawed6078
@mohamadmawed6078 7 жыл бұрын
What a fantastic video sir . The best tutorial on youtube about this topic .
@ShenZhao-u7n
@ShenZhao-u7n 8 жыл бұрын
A systematic and crystal clear lecture. Thanks!
@stickervvigger
@stickervvigger 11 жыл бұрын
Doc, I just want you to know that you've helped out a substantial majority of our class get through graduate modeling/controls. you rock! if you feel like moving to Colorado, we at CU would root for you. ^_- Thanks!
@taojunwang7965
@taojunwang7965 3 жыл бұрын
Thank you, this video really helps me with the understanding
@mohamadmawed6078
@mohamadmawed6078 7 жыл бұрын
What an amazing and very useful lecture . Thanks a lot for your help .
@salman3037
@salman3037 11 жыл бұрын
A very well explained lecture. Thanks.
@evanparshall1323
@evanparshall1323 3 жыл бұрын
Wow this video was incredible. Thank you!!!
@_thecontrolguy_
@_thecontrolguy_ 6 жыл бұрын
Thanks a lot for the video, explained very clearly and very intuitively.
@yeboutix5898
@yeboutix5898 3 жыл бұрын
hello Do you know how to make a state feedback (for a pole placement) when I have in the system some state variables that are not controllable ? I know i must take only the controlable AND the observable state but i don't know how to convert the input for the real system.
@mohamedelaminenehar333
@mohamedelaminenehar333 3 жыл бұрын
😄 ترجم ترجم
@KelvinAnto
@KelvinAnto 7 жыл бұрын
Thanks a lot sir.... Greetings from New Zealand
@mirkoaveta3983
@mirkoaveta3983 11 жыл бұрын
Thanks. Very good lecture.
@AndyPayne42
@AndyPayne42 10 жыл бұрын
Notice at the end of the video, 25:30 he states his assumption that time = 0....this is a false but useful assumption. Because you need to "store" the imaginary part in something because you can't observe the entire universe at once, ie your information is always limited...otherwise this video is decent, this is classical stuff though I suggest you look at the new math of origami or folding which takes this matrix algebra and really puts a new perspective on it.
@SatyaKumarVadlamani
@SatyaKumarVadlamani 8 жыл бұрын
+Andy Payne He didn't say that "time = 0". He said that the initial condition of the states, x(t0) = 0. That is, the states are initially assumed to be zero. Because, if you apply a Laplace transform on the differential equation governing the system, you'll find it hard to get the series in the Y(s)/U(s) form unless you consider initial conditions as 0.
@dr.seaaral-dabooni383
@dr.seaaral-dabooni383 11 жыл бұрын
thanks
@OfficialDjn0size
@OfficialDjn0size 6 жыл бұрын
SCON é pra meninos assim bambore
@andrealves7938
@andrealves7938 10 жыл бұрын
very good lecture, thanks!
@core6jae
@core6jae 8 жыл бұрын
Thank you for the awesome lecture
State Feedback (Dr. Jake Abbott, University of Utah)
20:58
JJAbbottatUtah
Рет қаралды 13 М.
We Attempted The Impossible 😱
00:54
Topper Guild
Рет қаралды 56 МЛН
Каха и дочка
00:28
К-Media
Рет қаралды 3,4 МЛН
To Brawl AND BEYOND!
00:51
Brawl Stars
Рет қаралды 17 МЛН
Jordan Form (Dr. Jake Abbott, University of Utah)
26:42
JJAbbottatUtah
Рет қаралды 53 М.
Controllability [Control Bootcamp]
32:30
Steve Brunton
Рет қаралды 155 М.
Modal Canonical Form Example
16:13
Jonathan Sprinkle
Рет қаралды 21 М.
State Observers (Dr. Jake Abbott, University of Utah)
18:54
JJAbbottatUtah
Рет қаралды 26 М.
Introduction to Linear Systems (Dr. Jake Abbott, University of Utah)
35:26
Controllability and Observability in the Jordan Form
20:27
JJAbbottatUtah
Рет қаралды 3,6 М.
Gain and Phase Margins Explained!
13:54
Brian Douglas
Рет қаралды 661 М.
State space analysis 5 - controllability worked examples
9:52
John Rossiter
Рет қаралды 80 М.
L27B:  The Kalman Decomposition
6:19
ControlSystemSynthesisI
Рет қаралды 10 М.