Yea, I really need this I'm searching this proof for days and i haven't found it
@edskev76963 жыл бұрын
Maybe late, but here's a proof! You need to do a little work to get the expression used in the video, but gives the basic ideas. users.math.msu.edu/users/magyarp/Math880/Lagrange.pdf
@atrimandal43246 жыл бұрын
Bois - T Series Men - Pewdiepie Legends - Flammable Maths ❤️
@1Adamrpg5 жыл бұрын
Agreed with some other comments, briefly discussing the radius of convergence would've been nice. Since n^n grows much faster than n!, this expansion only works for small z. I think it's z < 1/e if I recall correctly
@Soundillusions94xyz6 жыл бұрын
"Welcome back to anow video" I love your accent and I love you. Now that my differential equations class started, I hope you keep the differential equations videos coming!
@weird4076 жыл бұрын
Doing maths: yes papa Proving theorem: yes papa Lying?: no papa don't kick me papa flammy
@JacoTheDeadRuler6 жыл бұрын
XD
@mehdielwafi70076 жыл бұрын
XD
@treyforest24665 жыл бұрын
I’d be curious to know how this Taylor series deals with the fact that W(z) has two branches. Does the same polynomial somehow describe both branches, or just one of them?
@quahntasy6 жыл бұрын
Two boards. Shlt is about to get serious
@samuelmarger90316 жыл бұрын
We might need to find its radius and interval of convergence. Maybe calculus stuffs, bprp can help!
@Blackfir3336 жыл бұрын
But why is it called the Lambert W function? A guy named Lambert just liked the letter W?
@WhattheHectogon6 жыл бұрын
Should pronounce it Lambert Vvvvv function, cuz that's much more deutlich, obviously.
@ThePron86 жыл бұрын
Maybe because "L" is often used for Laplace transform and Lagrangian:)
@10erlangga6 жыл бұрын
W for weed
@Koisheep6 жыл бұрын
It's a Kamen Rider W reference
@skylardeslypere99095 жыл бұрын
W for Wednesday my dude aaAaAAAaaAaaAAaaaAaaAaAaAAAHhhHhHHhHH
@lukaskaufmann31786 жыл бұрын
ˋˋit falls a bit from the skyˋˋ
@pablojulianjimenezcano43626 жыл бұрын
Lambert W function is the best function in the universe :V!!!!!!!
@michaelempeigne35196 жыл бұрын
Prove the Lagrange Inversion Theorem.
@noahali-origamiandmore20502 жыл бұрын
How does this work with the fact that W(z) has infinitely many branches. This definition only gives the principal branch.
@olimatthews56366 жыл бұрын
""It's bloody messy" 😂😂 thanks papa
@NoNTr1v1aL6 жыл бұрын
0:54 Mission failed. We'll get'em next time.
@xfcisco Жыл бұрын
this function is a big W. -- Labert
@TheUnorthodoxGears6 жыл бұрын
You seem like a chill guy... subbed
@Hexanitrobenzene6 жыл бұрын
TheUnorthodoxGears Hm, for me he looks like an arrogant smart ass, but in a funny and likeable way :D
@kayeassy6 жыл бұрын
Yaaay papa finally uploaded it ..
@sansamman46196 жыл бұрын
i got confused by the D^(n -1), thanks for showing the steps!
@sansamman46196 жыл бұрын
#wewantmore ummm.. i don't know I have no criticism but I want more.
@Hexanitrobenzene6 жыл бұрын
San Samman Probably Papa Flammy's source was using this notation. That's usually a sign of advanced material. However, there is no need for operator notation here.
@mlguy83766 жыл бұрын
A really nice video - just one slight typo. For the series coefficients you define “g_n(z)” which should not be the case since you are taking the limit of the variable z (though you use x).
@nemanjaberic68486 жыл бұрын
Omega-Tau-Phi indeed, and well deserved. One of few physicists that can do proofs, is our Papa Flammy. Remember that those physicists are the ones that were the greatest.
@noamtashma28596 жыл бұрын
So the mathematicians are the greatest physicists?
@marcioamaral75116 жыл бұрын
Could you make a video on Lagrange multipliers to find functions of several variables extrema?
@conanedojawa4538 Жыл бұрын
what's the radius of the convergence of this series ?
@TheBil13376 жыл бұрын
Automatic captioning at 8:10 - WTF I am gonna call BND you sneaky boi
@haowu99035 жыл бұрын
From which lecture in the university can I learn Lagrange inversion formula?
@luisroman67455 жыл бұрын
I come for the math, I stay cause papa is one sexy boi.
@sonialucy15 ай бұрын
MAKE MATHS GREAT AGAIN!
@subhagjain79836 жыл бұрын
THE BOARD UNDER THE BOARD🤣🤣
@xc3xz26 күн бұрын
can someone please explain to me how he found that second derivative?
@akashnarayanan97506 жыл бұрын
Hey papa flammy, not directly related to the video but I had a question. I know sometimes when you're solving your diff eqs and you have dy/dx = 2 or something, you integrate both sides with respect to x. You always say you can cancel out the dx's on the right if ur a physicist or you can introduce a proper substitution. What do you mean when you say a proper substitution?
@alcaz0r16 жыл бұрын
When you use separation of variables you end up with and integral, lets call it I, that looks like I = integral f(y) dy/dx dx. Let F be an anti-derivative of f. Then F = integral f(y) dy ... dF/dy = f ... dF/dy dy/dx = f(y) dy/dx, and by the chain rule of differentiation dF/dy dy/dx is nothing but dF/dx. Therefore, I = integral dF/dx dx = F = integral f(y) dy
@Hexanitrobenzene6 жыл бұрын
Akash Narayanan In a calculus book I learned from, it was proved that first order derivative, for ex. dy/dx, can be treated like a fraction, so canceling out dx is not an improper procedure. Higher order derivatives cannot be treated like fractions.
@sebastiian40026 жыл бұрын
Flammy lamby!
@willful7596 жыл бұрын
many thanks pappa
@michaelroberts11205 жыл бұрын
Fire Steinmeier! Flammy for President!
@jarogniewborkowski52844 жыл бұрын
Please try to derive Lagrange Inversion Theorem in similar way. It is very interesting tool. Best regards
@reinerwilhelms-tricarico3445 жыл бұрын
It would really be nice if you could provide an hemdsärmeligen proof of Lagrange’s inversion theorem. ;-)
@AubreyForever5 ай бұрын
I wish he would slow down more for high school students watching this.
@mdorghammm6 жыл бұрын
great video.
@wildatakalamingan26356 жыл бұрын
Beautiful :)
@46pi266 жыл бұрын
I still want to see a proof of the Lagrange inversion theorem so that I don't have to keep using series reversions:/
@WhattheHectogon6 жыл бұрын
Is 46 & pi the next version of that song?
@46pi266 жыл бұрын
@@WhattheHectogon Yeah it's gonna be on the new album
@harrygreen98046 жыл бұрын
Hell yeah
@harrygreen98046 жыл бұрын
Great video as always, I've been trying to find an inverse for the anti-derivative of the Maxwell-Boltzmann boi and couldn't find any worked examples of the Lagrange inversion theorem so this helps a lot
@cavver35236 жыл бұрын
I still can't understand Taylor Functions... did you do a video about this? Also, what is that big D at 1:05?
@NoNTr1v1aL6 жыл бұрын
That's mine.
@cavver35236 жыл бұрын
Oh okay, thanks papa!
@cavver35236 жыл бұрын
@@NoNTr1v1aL Lol
@cavver35236 жыл бұрын
@@misotanniold787 okay, I got the idea. Now I have to elaborate on this argument! Thank you!
@nevokrien955 жыл бұрын
i tried it with just tayloer seiries and got y(c)+lnu(x-c) u is constent
@nevokrien955 жыл бұрын
sorry ln 1+u(x-c)
@nevokrien955 жыл бұрын
this is wrong double checked again (the mistake was f''=-f'^2) working on this for the 2nd time i got a recursive formula for the Taylor series of the inverse of x^s*e^x but its a monster containing the sum of the n previous number in the seiris multiplied by ns however it seems like it is diverging a lot so this makes this function weird never the less it is unalitic
@zacharieetienne57846 жыл бұрын
Lagrange... small people... small...
@ApplyEval6 жыл бұрын
You have me hit mathematical climax with these series, papa.
@lucasdepetris58966 жыл бұрын
Hi, is it even possible to solve for x in 3^x+x^2-2=0 ?? Make a video plsss
@Hexanitrobenzene6 жыл бұрын
Lucas Depetris It seems that the constant term causes a lot of trouble. A similar equation without it is solved in wiki : en.m.wikipedia.org/wiki/Lambert_W_function ,section "Solutions of equations", example 3. However, this method cannot be applied when constant term is present, because then square root cannot be extracted. Help, Papa ! :D
@Koisheep6 жыл бұрын
It wpuld be great if someone sent you a featured video where the proof is explained *wink wink wonk
@AncientAncestor6 жыл бұрын
Give a proof of the error term in Simpsons Rule. I dare you!
@Hexanitrobenzene6 жыл бұрын
AncientAncestor Who likes calculating errors ? They tend to be dull, messy and tedious... Now this theorem is something else ! I suspect that proving it requires some serious knowledge of theory of functions of complex variable...
@AncientAncestor6 жыл бұрын
@@Hexanitrobenzene Charity Livestream? Watching Papa Flammys slow descent into madness as the hours pass of him performing increasingly more tedious but absolutely essential calculations in order to prove an absolutely essesntial result in the field of numerical integration would probably be the best thing to ever happen to the internet.
@maximiliankoch11566 жыл бұрын
Challenge: Solve a^n+b^n=c making n the subject using lambert W-function :)
@Hexanitrobenzene6 жыл бұрын
Maximilian Koch I assume you want a general solution for a^x+b^x=c, since n usually denotes natural numbers and this equation is not likely to have integer solutions. It seems that this equation requires other function to solve it, since there are no x'es not in the exponent. Let's see. We want the same base for exponential functions, say, a: b^x =[a^(log_a b)]^x = a^(x*log_a b) . Let's define a parameter p: p=log_a b=ln b/ln a . Our equation becomes a^x + a^(x*p)=c -> a^x + (a^x)^p=c . Let's change a variable : a^x=y -> y+y^p=c , y>0 . So, we get a polynomial-ish equation in terms of y - not polynomial, because p may not be integer. If we get y, x is just x=ln y/ln a, ln a=/=0, a=/=1. a=1 is a trivial case. What about p=ln b/ln a ? Let's explore the cases: p=0 -> ln b=0 -> b=1, trivial. p=1 -> ln b=ln a, b=a, trivial. p=2 - quadratic equation. p=3;4 - cubic and quartic equations. Algebraic solutions are known (wiki), but they are messy, especially for quartic. We can also solve p=l/m, where l,m=1;2;3;4. For example, p=3/4 : y^(3/4) + y=c ->[y^(1/4)]^3+[y^(1/4)]^4=c y^(1/4)=t, y=t^4 ->t^3 + t^4=c If p
@Hexanitrobenzene6 жыл бұрын
Maximilian Koch It seems that equation y^p +y=c can be solved by Lagrange inversion theorem. Here is solution to equation y^p - y=c : en.m.wikipedia.org/wiki/Lagrange_inversion_theorem ,Section "Example" . I guess that this equation can be turned to our form by using substitution y=(-1)^[1/(p-1)] *u, I extrapolate from article en.m.wikipedia.org/wiki/Bring_radical ,section "Normal forms", paragraph "Bring-Jerrard normal form". However, this substitution involves complex numbers in general, so... Dunno.
@PackSciences6 жыл бұрын
Proof of Lagrange Inversion Theorem: May y(x,b)= x + b*f(y), Near b = 0, we get the taylor expansion in b = 0: x + sum from k = 1 to infinity x^k / k! (partial^k / partial x^k) (y(x,0)) (1) y(x,b) = x - b*f(y(x,b)) partial y/partial x - 1 - b (partial f/partial y) (partial y/ partial b) = 0 means partial y/partial x (1-b*f'(y)) = 1 partial y/partial b - f(y(x,b)) - b (partial f/partial y) (partial y/ partial b) 0 means partial y/partial b (1-b*f'(y)) = f(y) Therefore, partial y/partial b = f(y) partial y / partial x (2) Now we want to show that for all n >0, (partial^n y/partial ^n b) = (partial^n-1 / partial x^n-1) (f^n (y) partial y/partial x). partial^2 y/ partial b^2 = (partial/partial b) (partial/partial b) (y) = (partial/partial b) (f(y) partial y/partial x)) = (partial/partial x) (f^2(y) partial y/partial x) By recursion, we get the said 3rd step formula. (3) In (x,0), y=x. partial y/partial x = 1 and partial^n/partial b^n (y(x,0)) = partial^n-1/partial x^n-1 (f^n(x)). By (1), we get the forth step: y = x + sum from k=1 to +infinity of b^k/k! (partial^k-1/partial x^k-1) f^k(x) (4) We have now proved the Lagrange Inversion theorem at x=0. A simple change of variable z=x+x_0 makes it in any real point.
@RAJSINGH-of9iy6 жыл бұрын
Where are you studying????
@RAJSINGH-of9iy6 жыл бұрын
Flammable Maths okk ty. You are doing a grt job, keep it up. U r doing graduation or msc???
@linuskelsey82956 жыл бұрын
do W(-π/2)
@matthewstevens3406 жыл бұрын
So are we having an affair with the Lambert W function? I see through the lies