Lambert W Taylor Series Expansion [ Lagrange Inversion Theorem ]

  Рет қаралды 29,064

Flammable Maths

Flammable Maths

Күн бұрын

Пікірлер: 94
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Yay!
@michaelempeigne3519
@michaelempeigne3519 6 жыл бұрын
Prove the Lagrange Inversion Theorem
@evanward5045
@evanward5045 3 жыл бұрын
Funny seeing you here, not
@jfr9964
@jfr9964 6 жыл бұрын
Now prove the Lagrange inversion theorem :D
@yarooborkowski5999
@yarooborkowski5999 5 жыл бұрын
Yes, would be very useful.
@arthurgames9610
@arthurgames9610 4 жыл бұрын
Yea, I really need this I'm searching this proof for days and i haven't found it
@edskev7696
@edskev7696 3 жыл бұрын
Maybe late, but here's a proof! You need to do a little work to get the expression used in the video, but gives the basic ideas. users.math.msu.edu/users/magyarp/Math880/Lagrange.pdf
@atrimandal4324
@atrimandal4324 6 жыл бұрын
Bois - T Series Men - Pewdiepie Legends - Flammable Maths ❤️
@1Adamrpg
@1Adamrpg 5 жыл бұрын
Agreed with some other comments, briefly discussing the radius of convergence would've been nice. Since n^n grows much faster than n!, this expansion only works for small z. I think it's z < 1/e if I recall correctly
@Soundillusions94xyz
@Soundillusions94xyz 6 жыл бұрын
"Welcome back to anow video" I love your accent and I love you. Now that my differential equations class started, I hope you keep the differential equations videos coming!
@weird407
@weird407 6 жыл бұрын
Doing maths: yes papa Proving theorem: yes papa Lying?: no papa don't kick me papa flammy
@JacoTheDeadRuler
@JacoTheDeadRuler 6 жыл бұрын
XD
@mehdielwafi7007
@mehdielwafi7007 6 жыл бұрын
XD
@treyforest2466
@treyforest2466 5 жыл бұрын
I’d be curious to know how this Taylor series deals with the fact that W(z) has two branches. Does the same polynomial somehow describe both branches, or just one of them?
@quahntasy
@quahntasy 6 жыл бұрын
Two boards. Shlt is about to get serious
@samuelmarger9031
@samuelmarger9031 6 жыл бұрын
We might need to find its radius and interval of convergence. Maybe calculus stuffs, bprp can help!
@Blackfir333
@Blackfir333 6 жыл бұрын
But why is it called the Lambert W function? A guy named Lambert just liked the letter W?
@WhattheHectogon
@WhattheHectogon 6 жыл бұрын
Should pronounce it Lambert Vvvvv function, cuz that's much more deutlich, obviously.
@ThePron8
@ThePron8 6 жыл бұрын
Maybe because "L" is often used for Laplace transform and Lagrangian:)
@10erlangga
@10erlangga 6 жыл бұрын
W for weed
@Koisheep
@Koisheep 6 жыл бұрын
It's a Kamen Rider W reference
@skylardeslypere9909
@skylardeslypere9909 5 жыл бұрын
W for Wednesday my dude aaAaAAAaaAaaAAaaaAaaAaAaAAAHhhHhHHhHH
@lukaskaufmann3178
@lukaskaufmann3178 6 жыл бұрын
ˋˋit falls a bit from the skyˋˋ
@pablojulianjimenezcano4362
@pablojulianjimenezcano4362 6 жыл бұрын
Lambert W function is the best function in the universe :V!!!!!!!
@michaelempeigne3519
@michaelempeigne3519 6 жыл бұрын
Prove the Lagrange Inversion Theorem.
@noahali-origamiandmore2050
@noahali-origamiandmore2050 2 жыл бұрын
How does this work with the fact that W(z) has infinitely many branches. This definition only gives the principal branch.
@olimatthews5636
@olimatthews5636 6 жыл бұрын
""It's bloody messy" 😂😂 thanks papa
@NoNTr1v1aL
@NoNTr1v1aL 6 жыл бұрын
0:54 Mission failed. We'll get'em next time.
@xfcisco
@xfcisco Жыл бұрын
this function is a big W. -- Labert
@TheUnorthodoxGears
@TheUnorthodoxGears 6 жыл бұрын
You seem like a chill guy... subbed
@Hexanitrobenzene
@Hexanitrobenzene 6 жыл бұрын
TheUnorthodoxGears Hm, for me he looks like an arrogant smart ass, but in a funny and likeable way :D
@kayeassy
@kayeassy 6 жыл бұрын
Yaaay papa finally uploaded it ..
@sansamman4619
@sansamman4619 6 жыл бұрын
i got confused by the D^(n -1), thanks for showing the steps!
@sansamman4619
@sansamman4619 6 жыл бұрын
#wewantmore ummm.. i don't know I have no criticism but I want more.
@Hexanitrobenzene
@Hexanitrobenzene 6 жыл бұрын
San Samman Probably Papa Flammy's source was using this notation. That's usually a sign of advanced material. However, there is no need for operator notation here.
@mlguy8376
@mlguy8376 6 жыл бұрын
A really nice video - just one slight typo. For the series coefficients you define “g_n(z)” which should not be the case since you are taking the limit of the variable z (though you use x).
@nemanjaberic6848
@nemanjaberic6848 6 жыл бұрын
Omega-Tau-Phi indeed, and well deserved. One of few physicists that can do proofs, is our Papa Flammy. Remember that those physicists are the ones that were the greatest.
@noamtashma2859
@noamtashma2859 6 жыл бұрын
So the mathematicians are the greatest physicists?
@marcioamaral7511
@marcioamaral7511 6 жыл бұрын
Could you make a video on Lagrange multipliers to find functions of several variables extrema?
@conanedojawa4538
@conanedojawa4538 Жыл бұрын
what's the radius of the convergence of this series ?
@TheBil1337
@TheBil1337 6 жыл бұрын
Automatic captioning at 8:10 - WTF I am gonna call BND you sneaky boi
@haowu9903
@haowu9903 5 жыл бұрын
From which lecture in the university can I learn Lagrange inversion formula?
@luisroman6745
@luisroman6745 5 жыл бұрын
I come for the math, I stay cause papa is one sexy boi.
@sonialucy1
@sonialucy1 5 ай бұрын
MAKE MATHS GREAT AGAIN!
@subhagjain7983
@subhagjain7983 6 жыл бұрын
THE BOARD UNDER THE BOARD🤣🤣
@xc3xz
@xc3xz 26 күн бұрын
can someone please explain to me how he found that second derivative?
@akashnarayanan9750
@akashnarayanan9750 6 жыл бұрын
Hey papa flammy, not directly related to the video but I had a question. I know sometimes when you're solving your diff eqs and you have dy/dx = 2 or something, you integrate both sides with respect to x. You always say you can cancel out the dx's on the right if ur a physicist or you can introduce a proper substitution. What do you mean when you say a proper substitution?
@alcaz0r1
@alcaz0r1 6 жыл бұрын
When you use separation of variables you end up with and integral, lets call it I, that looks like I = integral f(y) dy/dx dx. Let F be an anti-derivative of f. Then F = integral f(y) dy ... dF/dy = f ... dF/dy dy/dx = f(y) dy/dx, and by the chain rule of differentiation dF/dy dy/dx is nothing but dF/dx. Therefore, I = integral dF/dx dx = F = integral f(y) dy
@Hexanitrobenzene
@Hexanitrobenzene 6 жыл бұрын
Akash Narayanan In a calculus book I learned from, it was proved that first order derivative, for ex. dy/dx, can be treated like a fraction, so canceling out dx is not an improper procedure. Higher order derivatives cannot be treated like fractions.
@sebastiian4002
@sebastiian4002 6 жыл бұрын
Flammy lamby!
@willful759
@willful759 6 жыл бұрын
many thanks pappa
@michaelroberts1120
@michaelroberts1120 5 жыл бұрын
Fire Steinmeier! Flammy for President!
@jarogniewborkowski5284
@jarogniewborkowski5284 4 жыл бұрын
Please try to derive Lagrange Inversion Theorem in similar way. It is very interesting tool. Best regards
@reinerwilhelms-tricarico344
@reinerwilhelms-tricarico344 5 жыл бұрын
It would really be nice if you could provide an hemdsärmeligen proof of Lagrange’s inversion theorem. ;-)
@AubreyForever
@AubreyForever 5 ай бұрын
I wish he would slow down more for high school students watching this.
@mdorghammm
@mdorghammm 6 жыл бұрын
great video.
@wildatakalamingan2635
@wildatakalamingan2635 6 жыл бұрын
Beautiful :)
@46pi26
@46pi26 6 жыл бұрын
I still want to see a proof of the Lagrange inversion theorem so that I don't have to keep using series reversions:/
@WhattheHectogon
@WhattheHectogon 6 жыл бұрын
Is 46 & pi the next version of that song?
@46pi26
@46pi26 6 жыл бұрын
@@WhattheHectogon Yeah it's gonna be on the new album
@harrygreen9804
@harrygreen9804 6 жыл бұрын
Hell yeah
@harrygreen9804
@harrygreen9804 6 жыл бұрын
Great video as always, I've been trying to find an inverse for the anti-derivative of the Maxwell-Boltzmann boi and couldn't find any worked examples of the Lagrange inversion theorem so this helps a lot
@cavver3523
@cavver3523 6 жыл бұрын
I still can't understand Taylor Functions... did you do a video about this? Also, what is that big D at 1:05?
@NoNTr1v1aL
@NoNTr1v1aL 6 жыл бұрын
That's mine.
@cavver3523
@cavver3523 6 жыл бұрын
Oh okay, thanks papa!
@cavver3523
@cavver3523 6 жыл бұрын
@@NoNTr1v1aL Lol
@cavver3523
@cavver3523 6 жыл бұрын
@@misotanniold787 okay, I got the idea. Now I have to elaborate on this argument! Thank you!
@nevokrien95
@nevokrien95 5 жыл бұрын
i tried it with just tayloer seiries and got y(c)+lnu(x-c) u is constent
@nevokrien95
@nevokrien95 5 жыл бұрын
sorry ln 1+u(x-c)
@nevokrien95
@nevokrien95 5 жыл бұрын
this is wrong double checked again (the mistake was f''=-f'^2) working on this for the 2nd time i got a recursive formula for the Taylor series of the inverse of x^s*e^x but its a monster containing the sum of the n previous number in the seiris multiplied by ns however it seems like it is diverging a lot so this makes this function weird never the less it is unalitic
@zacharieetienne5784
@zacharieetienne5784 6 жыл бұрын
Lagrange... small people... small...
@ApplyEval
@ApplyEval 6 жыл бұрын
You have me hit mathematical climax with these series, papa.
@lucasdepetris5896
@lucasdepetris5896 6 жыл бұрын
Hi, is it even possible to solve for x in 3^x+x^2-2=0 ?? Make a video plsss
@Hexanitrobenzene
@Hexanitrobenzene 6 жыл бұрын
Lucas Depetris It seems that the constant term causes a lot of trouble. A similar equation without it is solved in wiki : en.m.wikipedia.org/wiki/Lambert_W_function ,section "Solutions of equations", example 3. However, this method cannot be applied when constant term is present, because then square root cannot be extracted. Help, Papa ! :D
@Koisheep
@Koisheep 6 жыл бұрын
It wpuld be great if someone sent you a featured video where the proof is explained *wink wink wonk
@AncientAncestor
@AncientAncestor 6 жыл бұрын
Give a proof of the error term in Simpsons Rule. I dare you!
@Hexanitrobenzene
@Hexanitrobenzene 6 жыл бұрын
AncientAncestor Who likes calculating errors ? They tend to be dull, messy and tedious... Now this theorem is something else ! I suspect that proving it requires some serious knowledge of theory of functions of complex variable...
@AncientAncestor
@AncientAncestor 6 жыл бұрын
@@Hexanitrobenzene Charity Livestream? Watching Papa Flammys slow descent into madness as the hours pass of him performing increasingly more tedious but absolutely essential calculations in order to prove an absolutely essesntial result in the field of numerical integration would probably be the best thing to ever happen to the internet.
@maximiliankoch1156
@maximiliankoch1156 6 жыл бұрын
Challenge: Solve a^n+b^n=c making n the subject using lambert W-function :)
@Hexanitrobenzene
@Hexanitrobenzene 6 жыл бұрын
Maximilian Koch I assume you want a general solution for a^x+b^x=c, since n usually denotes natural numbers and this equation is not likely to have integer solutions. It seems that this equation requires other function to solve it, since there are no x'es not in the exponent. Let's see. We want the same base for exponential functions, say, a: b^x =[a^(log_a b)]^x = a^(x*log_a b) . Let's define a parameter p: p=log_a b=ln b/ln a . Our equation becomes a^x + a^(x*p)=c -> a^x + (a^x)^p=c . Let's change a variable : a^x=y -> y+y^p=c , y>0 . So, we get a polynomial-ish equation in terms of y - not polynomial, because p may not be integer. If we get y, x is just x=ln y/ln a, ln a=/=0, a=/=1. a=1 is a trivial case. What about p=ln b/ln a ? Let's explore the cases: p=0 -> ln b=0 -> b=1, trivial. p=1 -> ln b=ln a, b=a, trivial. p=2 - quadratic equation. p=3;4 - cubic and quartic equations. Algebraic solutions are known (wiki), but they are messy, especially for quartic. We can also solve p=l/m, where l,m=1;2;3;4. For example, p=3/4 : y^(3/4) + y=c ->[y^(1/4)]^3+[y^(1/4)]^4=c y^(1/4)=t, y=t^4 ->t^3 + t^4=c If p
@Hexanitrobenzene
@Hexanitrobenzene 6 жыл бұрын
Maximilian Koch It seems that equation y^p +y=c can be solved by Lagrange inversion theorem. Here is solution to equation y^p - y=c : en.m.wikipedia.org/wiki/Lagrange_inversion_theorem ,Section "Example" . I guess that this equation can be turned to our form by using substitution y=(-1)^[1/(p-1)] *u, I extrapolate from article en.m.wikipedia.org/wiki/Bring_radical ,section "Normal forms", paragraph "Bring-Jerrard normal form". However, this substitution involves complex numbers in general, so... Dunno.
@PackSciences
@PackSciences 6 жыл бұрын
Proof of Lagrange Inversion Theorem: May y(x,b)= x + b*f(y), Near b = 0, we get the taylor expansion in b = 0: x + sum from k = 1 to infinity x^k / k! (partial^k / partial x^k) (y(x,0)) (1) y(x,b) = x - b*f(y(x,b)) partial y/partial x - 1 - b (partial f/partial y) (partial y/ partial b) = 0 means partial y/partial x (1-b*f'(y)) = 1 partial y/partial b - f(y(x,b)) - b (partial f/partial y) (partial y/ partial b) 0 means partial y/partial b (1-b*f'(y)) = f(y) Therefore, partial y/partial b = f(y) partial y / partial x (2) Now we want to show that for all n >0, (partial^n y/partial ^n b) = (partial^n-1 / partial x^n-1) (f^n (y) partial y/partial x). partial^2 y/ partial b^2 = (partial/partial b) (partial/partial b) (y) = (partial/partial b) (f(y) partial y/partial x)) = (partial/partial x) (f^2(y) partial y/partial x) By recursion, we get the said 3rd step formula. (3) In (x,0), y=x. partial y/partial x = 1 and partial^n/partial b^n (y(x,0)) = partial^n-1/partial x^n-1 (f^n(x)). By (1), we get the forth step: y = x + sum from k=1 to +infinity of b^k/k! (partial^k-1/partial x^k-1) f^k(x) (4) We have now proved the Lagrange Inversion theorem at x=0. A simple change of variable z=x+x_0 makes it in any real point.
@RAJSINGH-of9iy
@RAJSINGH-of9iy 6 жыл бұрын
Where are you studying????
@RAJSINGH-of9iy
@RAJSINGH-of9iy 6 жыл бұрын
Flammable Maths okk ty. You are doing a grt job, keep it up. U r doing graduation or msc???
@linuskelsey8295
@linuskelsey8295 6 жыл бұрын
do W(-π/2)
@matthewstevens340
@matthewstevens340 6 жыл бұрын
So are we having an affair with the Lambert W function? I see through the lies
@vinitchauhan973
@vinitchauhan973 6 жыл бұрын
:")
@kingarvish4269
@kingarvish4269 6 жыл бұрын
:D
@TheHosti
@TheHosti 6 жыл бұрын
fiRsT11!!
@Riiisuu
@Riiisuu 6 жыл бұрын
Please no more lambert videos 😖 too much for me
@nejlaakyuz4025
@nejlaakyuz4025 6 жыл бұрын
More lambert, more lambert more lambert
Taylor and Maclaurin Series - An Introduction
8:40
Flammable Maths
Рет қаралды 27 М.
Integrating Lambert W Function
12:59
Prime Newtons
Рет қаралды 50 М.
Sigma Kid Mistake #funny #sigma
00:17
CRAZY GREAPA
Рет қаралды 12 МЛН
If people acted like cats 🙀😹 LeoNata family #shorts
00:22
LeoNata Family
Рет қаралды 32 МЛН
How Much Tape To Stop A Lamborghini?
00:15
MrBeast
Рет қаралды 253 МЛН
Turn Off the Vacum And Sit Back and Laugh 🤣
00:34
SKITSFUL
Рет қаралды 9 МЛН
Lagrange Inversion is wild
18:04
Flammable Maths
Рет қаралды 27 М.
Lambert W Function
14:35
Prime Newtons
Рет қаралды 676 М.
Derivative of Lambert W function
13:07
Prime Newtons
Рет қаралды 39 М.
The Simple Guide to the Lambert W Function Graph
19:50
Gresty Academy
Рет қаралды 7 М.
The Bernoulli Integral is ridiculous
10:00
Dr. Trefor Bazett
Рет қаралды 711 М.
You're Probably Wrong About Rainbows
27:11
Veritasium
Рет қаралды 1,4 МЛН
You Didn't Learn This In School
3:28
BriTheMathGuy
Рет қаралды 89 М.
Sigma Kid Mistake #funny #sigma
00:17
CRAZY GREAPA
Рет қаралды 12 МЛН