LangGraph interrupt: Making it easier to build human-in-the-loop agents

  Рет қаралды 9,401

LangChain

LangChain

Күн бұрын

Пікірлер
@MatthewSanders-l7k
@MatthewSanders-l7k Ай бұрын
LGraph's persistence layer is a total game-changer for human-in-the-loop interactions. I'm loving the Interrupt tool - seamless input and resumption of nodes is huge.
@jingqiwu2865
@jingqiwu2865 Ай бұрын
Awesome! been waiting for this solution for months. We have done some workaround to achieve the similar goal, but now it is much elegant.
@ki-werkstatt
@ki-werkstatt Ай бұрын
This is great! Always wanted to stop for a human input in an easy way. THX
@CharlotteLopez-n3i
@CharlotteLopez-n3i Ай бұрын
I'm loving the new interrupt tool in L Graph - game-changer for human-in-the-loop interactions. Can't wait to dive into the use cases.
@RaviPrakash-dz9fm
@RaviPrakash-dz9fm Ай бұрын
Just what i needed. Was having to code this part myself for my app.
@kenchang3456
@kenchang3456 Ай бұрын
Thanks for this feature. I agree, human in the loop is a good/necessary thing.
@KeyserTheRedBeard
@KeyserTheRedBeard Ай бұрын
Great video, LangChain. Looking forward to seeing your next upload from you. I pressed the thumbs up icon on your content. Keep up the amazing work! The introduction of the interrupt function seems like a game changer for human-in-the-loop systems. How do you see this impacting the future of multi-agent interactions, especially in terms of efficiency and oversight?
@NaveenReddy-p5j
@NaveenReddy-p5j Ай бұрын
Love the Interrupt feature! How do you see it impacting the development of multi-agent systems?
@AlexJohnson-g4n
@AlexJohnson-g4n Ай бұрын
Love the interrupt feature in L Graph! How do you see it improving human-in-the-loop interaction patterns in real-world agent development?
@aifarmerokay
@aifarmerokay Ай бұрын
Covers the streaming in langgraph how to do in production
@Trazynn
@Trazynn Ай бұрын
So far most videos have been on building multi-agent networks. But perhaps maybe take a step back and get more into something more basic and usable; which is automated prompt workflows. Scalable multi-prompt chains that aren't agentic but simply allow a team to process large amounts of qualitative data (i'm thinking of phone transcripts, chatlogs, customer interviews). Stuff that needs a chain of many prompts such that the context-windwos don't degrade the material.
@Bahamamos
@Bahamamos 29 күн бұрын
Agents do that
@gregorbeuster9923
@gregorbeuster9923 Ай бұрын
How can this be used with LangGraph Cloud API?
@tjm6994
@tjm6994 Ай бұрын
The way ya'll be shipping. Hard to keep up lol
Building a fully local "deep researcher" with DeepSeek-R1
14:21
LangChain
Рет қаралды 155 М.
Building Reliable Agents With LangGraph
20:39
Snowflake Developers
Рет қаралды 7 М.
Quando A Diferença De Altura É Muito Grande 😲😂
00:12
Mari Maria
Рет қаралды 45 МЛН
Beat Ronaldo, Win $1,000,000
22:45
MrBeast
Рет қаралды 158 МЛН
Don’t Choose The Wrong Box 😱
00:41
Topper Guild
Рет қаралды 62 МЛН
Transformers (how LLMs work) explained visually | DL5
27:14
3Blue1Brown
Рет қаралды 4,7 МЛН
Audiobook Summary - How Music Got Free by Stephen Witt
26:27
AudioFire Audiobooks
Рет қаралды
LangGraph Functional API Overview
19:30
LangChain
Рет қаралды 10 М.
AI Is Making You An Illiterate Programmer
27:22
ThePrimeTime
Рет қаралды 288 М.
LangChain vs LangGraph: A Tale of Two Frameworks
9:55
IBM Technology
Рет қаралды 92 М.
Coding Was HARD Until I Learned These 5 Things...
8:34
Elsa Scola
Рет қаралды 904 М.
Building Effective Agents with LangGraph
31:50
LangChain
Рет қаралды 27 М.
Understanding and Effectively Using AI Reasoning Models
15:16
LangChain
Рет қаралды 20 М.
What are AI Agents?
12:29
IBM Technology
Рет қаралды 1,2 МЛН