Beautiful Integral from Stanford Math Tournament

  Рет қаралды 94,680

LetsSolveMathProblems

LetsSolveMathProblems

Күн бұрын

Пікірлер: 141
@avananana
@avananana 6 жыл бұрын
Integration is a form of art itself. It's damn beautiful once you get it to work the way you want it to.
@AayushVarma18
@AayushVarma18 6 жыл бұрын
Someone rightly said differentiation is a technique, but integration is an art!
@codetrooper9279
@codetrooper9279 3 жыл бұрын
Yes it is really
@bertiewarner9381
@bertiewarner9381 6 жыл бұрын
You can also do the cos equality first to reduce it to the integral from 0 to pi of xsin(x)/(1+(cosx)^2) dx then make the substitution u=cos(x) which gives the integral (after incorporating minus sign into the limits) from -1 to 1 of arccos(u)/(1+u^2) du. We can now go integration by parts recognising that the bottom is the derivative of arctan(u) to get that the answer is (arccos(u)*arctan(u)) evaluated between -1 and 1 plus the integral from -1 to 1 of arctan(u)/sqrt(1-u^2) du. This gives us pi^2/4 plus the integral but we notice that the integrand is odd and integrated between -1 and 1 so evaluates to 0, therefore our answer is (pi^2)/4
@edmundwoolliams1240
@edmundwoolliams1240 6 жыл бұрын
I did it differently. I used integration by parts on the original integral to get I = (pi^2)/4 + int(0 to pi, arctan(cosx)dx). Then I used u = pi/2 - x to convert it to I = (pi^2)/4 + int(-pi/2 to pi/2, arctan(sinx)dx), then subbed u = -x to get another equation which I could then add to eliminate the nasty int(-pi/2 to pi/2, arctan(sinx)dx) to leave 2I = (pi^2)/2, and I = (pi^2)/4 . But I think your method was much slicker, it was interesting to see how two separate journeys through integration yielded the same correct result.
@martinepstein9826
@martinepstein9826 6 жыл бұрын
That's what I did, except you can skip that last substitution because int(-pi/2 to pi/2, arctan(sinx)dx) is the integral of an odd function over a symmetric interval and therefore 0.
@michaelsonntag1469
@michaelsonntag1469 6 жыл бұрын
int(0 to pi, arctan(cos(x))dx) is zero due to symmetry reasons.
@pbj4184
@pbj4184 4 жыл бұрын
@@martinepstein9826 I mean, that is how the symmetry argument works. He just proved it when he wanted to use it
@holyshit922
@holyshit922 5 жыл бұрын
1. Substitution to get interval symmetric over zero 2. Split integrand to even and odd part 3. Use trig identity to expand cos2x 4. Evaluate integral with even part of integrand with substitution and possibly partial fraction decomposition In fact partial fraction decomposition will not be necessary because we will get arctan
@minhazulislam4682
@minhazulislam4682 4 жыл бұрын
I was stuck as I had an x * sinx. I learn today we can solve this problem by changing variables(which helps simplify). I somehow reached the ending similar to this, just that one x wasn't letting me tan^-1. Good one, thanks for making this one.
@HisMajesty99
@HisMajesty99 6 жыл бұрын
Wow, beautiful
@benburdick9834
@benburdick9834 6 жыл бұрын
I love these integration videos so much. Please, I would love to see more!
@decentman7555
@decentman7555 4 жыл бұрын
kzbin.info/www/bejne/r5C7qIShmM2qqKc
@decentman7555
@decentman7555 4 жыл бұрын
you can see here a lot of tricky integration problems solving by short cut method.... see this given link.. kzbin.info/www/bejne/r5C7qIShmM2qqKc
@H2CO3Szifon
@H2CO3Szifon 6 жыл бұрын
from 7:51: you could also observe that the numerator of the remaining integrand is almost the derivative of the denominator, (give or take a factor of -1/2), so its antiderivative is something like -1/2 ln (3 + cos 2u).
@ianrobinson8518
@ianrobinson8518 6 жыл бұрын
Árpád Goretity No, not quite. Differentiate your “solution” and you will have sin(2u) on the numerator.
@H2CO3Szifon
@H2CO3Szifon 6 жыл бұрын
oh, right, it's sin(2u), that might not make things easier, then.
@ianrobinson8518
@ianrobinson8518 6 жыл бұрын
Don’t be embarrassed. I thought I saw the same thing too and was confused for a while how a log could produce the desired result! In fact it produced zero. I eventually tweeked to my error.
@andrewkreisher689
@andrewkreisher689 6 жыл бұрын
i like this one a lot, one day i hope to compete in the mit integral bee so this is good practice
@ruetata11
@ruetata11 4 жыл бұрын
Any student can compete for mit bee????
@ruetata11
@ruetata11 4 жыл бұрын
Please reply...... 🤨🤨
@Ty-sc2ri
@Ty-sc2ri 4 жыл бұрын
@@ruetata11 what do you think?
@ruetata11
@ruetata11 4 жыл бұрын
@@Ty-sc2ri IDK, I GUESS ONLY MIT STUDENT CAN APPLY
@pinsonraphael4873
@pinsonraphael4873 Жыл бұрын
Great video! This is a special case of a result for symmetrical functions: if f satisfies f( a + b - x) = f(x) (meaning it has an axis of symmetry at x = (a+b)/2) , then the integral of xf(x) from a to b is equal to (a+b)/2 times integral of f(x) from a to b. Applying this to f(x) = 2sin(x)/(3+cos(2x)) immediately yields the result because it satisfies f(pi - x) = f(x). I think you even proved this result on your channel in another video to solve a difficult-looking integral
@iamtrash288
@iamtrash288 4 жыл бұрын
I solved it like this(got bored typing halfway thru so sorry) we could expand 3 + cos(2x) to 2(1 + (cos(x))^2), eliminate the 2 above and below and get the integrand (x*sinx*dx)/(1+(cosx)^2). u = cosx => du = sinx*dx (we have it already) u(pi) = -1 u(0) = 1 so we have a definite integral from 1 to -1 of arccos(u)/(1+u^2) integrating it by parts we get - integral from -1 to 1 of arctan(u)/sqrt(1 - u^2) but notice that atctan is an odd function while the expression below is even. Add the fact that we have a symmetric interval and we get that this integral is actually equal to zero and we get the answer (written in blabla)
@HeyKevinYT
@HeyKevinYT 4 жыл бұрын
okk
@AakashKumar-by6gi
@AakashKumar-by6gi 6 жыл бұрын
Your maths is beautiful. I'm in love with it!!!!!!!!!!!!!
@rickybobby5584
@rickybobby5584 6 жыл бұрын
nice and by the way because the integrand is an even function, we can find the integral for limits from 0 to pi/2 by dividing the final answer by 2
@terry_tamali
@terry_tamali 5 жыл бұрын
You can simply apply the limit formula of definite integrals, get rid of the x, convert cos2x into 2 cos^2x -1, take 2 outside from the denominator, then substitute t for cosx - there ya have it!!
@closed1209
@closed1209 4 жыл бұрын
omg this is exactly one of my homework , you save my life thank you so much
@beoptimistic5853
@beoptimistic5853 3 жыл бұрын
kzbin.info/www/bejne/joKsk6FobMmCoKc 💐💐
@duncanw9901
@duncanw9901 6 жыл бұрын
I often wonder on these tests if they would allow you to solve them using laplace-inverse-laplace stuff.
@decentman7555
@decentman7555 4 жыл бұрын
kzbin.info/www/bejne/r5C7qIShmM2qqKc
@maalikserebryakov
@maalikserebryakov Жыл бұрын
What do you mean
@outofbox000
@outofbox000 4 жыл бұрын
Man that was a beauty.
@sunitajha7596
@sunitajha7596 3 жыл бұрын
Well, it was easy. But very elegant. I initially tried integration by parts, but the problem became trivial when I replaced x by π - x and added.
@dydx3741
@dydx3741 6 жыл бұрын
really amazing ... so soothing and satisfying
@aryan24jan
@aryan24jan 4 жыл бұрын
kzbin.info/www/bejne/r5C7qIShmM2qqKc
@theoleblanc9761
@theoleblanc9761 6 жыл бұрын
I did it like that: first remplace cos2x by 2cos^2x-1, you get: int btw 0/π of xsinx/(1+(cosx)^2) Sub cosx by u you get: int btw -1/1 of arccos(u)/(1+u^2) Integration by part and you get: arccos(u)arctan(u) btw -1/1 + int btw -1/1 of arctan(u)/√(1-u^2) the intergral part is 0 because it is odd, Finally you get π^2/4 👍 Really nice integral! Thank you! Your method is really nice, it is really important to see symmetries like this one on cosine and sine functions!
@wedemeyermath4896
@wedemeyermath4896 6 жыл бұрын
When I first came across this problem, I uploaded a solution video as well. This is one of my favorite integrals :)
@dydx3741
@dydx3741 6 жыл бұрын
yes i watched your video :)
@computergenius365
@computergenius365 5 жыл бұрын
This is so beautiful
@shenal8167
@shenal8167 3 жыл бұрын
This is beauti of maths
@silentintegrals9104
@silentintegrals9104 3 жыл бұрын
totally agree!
@tgx3529
@tgx3529 2 жыл бұрын
Integral= integral x* sinx/(1+ ( cosx)^2) dx on (0;π). Primitive function to sinx/(1+(cosx)^2) is function - arctg( cosx). Then se can use metod by parts [ x*(- arctg( cosx)] + integral arctg( cosx))dx , this integral Is eq. zero on(0;π). We get result π*π/4.
@نعمللوحدة
@نعمللوحدة 5 жыл бұрын
Beautiful
@beoptimistic5853
@beoptimistic5853 3 жыл бұрын
kzbin.info/www/bejne/joKsk6FobMmCoKc 💐💐
@anshumansahu1087
@anshumansahu1087 6 жыл бұрын
the day you learn to apply integration to real life problems you can say u have understood integration properly. Till then keep practicing as you still have a long way to go.
@LetsSolveMathProblems
@LetsSolveMathProblems 6 жыл бұрын
Although mathematics is certainly valuable in many areas of sciences (notably physics), I would like to respectfully disagree with your assertion. Mathematics should not be treated as a foundation only existent to merely allow other scientific fields to flourish; rather, it should be seen as a picturesque garden harboring and giving birth to its own flowers of elegance. Perhaps the flowers blossoming in beauty are not necessarily applicable to life--yet, who would dare to argue they should be ignored and thrashed when they are inherently a form of art? Take set theory for example. So far, physics has yet to illustrate the direct physical application of set theory. Nevertheless, set theory forms the ultimate foundation for modern pure math! Not only that, set theory has given birth to a myriad of elegant suppositions about infinity. Same applies for integration. Sure, the nature of integration (that it reverses the rate of change process) makes it an important tool for modeling real life phenomena (Maxwell's equations, displacement, impulse, work, divergence theorem, and many, many more physics laws and equations are based on integration). Yet, just purely by itself, integration is beautiful, exciting, and fun. In the end, the joy of pure math comes from, of course, the joy of it by itself, not necessarily from its connection to real life. Once one truly appreciates the intricate nature of integrals (and other mathematical manifestation of universe and human thought), I think one has accomplished a long journey, not having "a long way to go" in the sense of not having "understood it properly."
@anshumansahu1087
@anshumansahu1087 6 жыл бұрын
LetsSolveMathProblems well I think you have taken this statement of mine as a dig on you but it is not so. It is for all of us in general. Sorry if I have caused any offence.
@LetsSolveMathProblems
@LetsSolveMathProblems 6 жыл бұрын
I apologize if I sounded too sensitive or critical; that was not the intention. I personally have always pondered the relationship between applied and pure mathematics, and I thought you provided a good stimulus for a friendly discussion. I appreciate commenters like you who go beyond the topic at hand to discuss a more general picture. And, as you astutely remarked, it is true that for many viewers (especially those with certain occupations) that applied side of integration is more valuable. Again, I apologize if my tone came out to be censorious. Thank you so much for sharing your opinions! =)
@YASHGUPTA-ft7mz
@YASHGUPTA-ft7mz 3 жыл бұрын
You can use the fact that integral.f(x) ( a to b )= integral.f(a+b-x) this would surely cut x and we will end up a simple trignometric integral . :)
@MiguelFernandez-ix8mi
@MiguelFernandez-ix8mi 6 жыл бұрын
Awesome video! Thank you!
@decentman7555
@decentman7555 4 жыл бұрын
kzbin.info/www/bejne/r5C7qIShmM2qqKc
@pooydragon5398
@pooydragon5398 5 жыл бұрын
It's pretty easy if you know that integral of f(x)dx from a to b = integral of f(a+b-x)dx from a to b. Then just do what he did. I learnt it as first property of definite integration.
@aryan24jan
@aryan24jan 4 жыл бұрын
kzbin.info/www/bejne/r5C7qIShmM2qqKc
@0-1min11
@0-1min11 3 жыл бұрын
IIT students can solve it without touching the pen . Experimentally determined.
@vanchhitdubey
@vanchhitdubey 6 жыл бұрын
Use property I(x) = I(π-x) U will get one more I on the RHS with a simple function to integrate Write cos2x = 2cos^2x -1 Take 2 common and cancel it Take cosx =t substitution Integrate easily integration will be tan^-1x , limit changed to 1 to -1 Put limit and finally I = pi^2/4
@sauravthegreat8533
@sauravthegreat8533 5 жыл бұрын
Couldn’t you use the formula where if the numerator is a differential of the denominator, the integral of that function is ln(denominator), after making some changes of course like multiplying by -2?
@tukarampawar4302
@tukarampawar4302 2 жыл бұрын
Apply kings property and then substitute sine as t
@anilsharma-ev2my
@anilsharma-ev2my 4 жыл бұрын
What is relationship between function and it's intergreled equation So we find a simple percentage and get rid of lengthy calculation
@beoptimistic5853
@beoptimistic5853 3 жыл бұрын
kzbin.info/www/bejne/joKsk6FobMmCoKc 💐💐
@AliAbdalla
@AliAbdalla 4 жыл бұрын
(pi^2)/8 numerically
@beoptimistic5853
@beoptimistic5853 3 жыл бұрын
kzbin.info/www/bejne/joKsk6FobMmCoKc 💐💐
@willli9529
@willli9529 Жыл бұрын
i solved it using kings property, first my trigonometrically simplifying the integral to I = int from 0 to pi of 2xsinx/(3 + 2(cosx)^2-1) dx or int from 0 to pi of xsinx/((cosx)^2+1) dx. applying kings property this becomes I = int from 0 to pi of (pi-x) sin(pi-x)/((cos(pi-x))^2+1) dx, or simplified trigonometrically to I = int from 0 to pi of (pi-x) sinx/((cosx)^2+1) dx. adding the original I to the version with king's property applied yields 2I = int from 0 to pi of (x + pi -x)sinx/((cosx)^2+1) dx) which equals int from 0 to pi of pisinx/((cosx)^2+1) dx. from here it is just a u-sub with u = cosx and du = -sinx dx, and the evaluated indefinite integral is pi* -arctan(cosx). plugging in bounds of integration yields 2I = -pi * (-pi/4-pi/4) or (pi^2)/2; thus I = (pi^2)/4
@Fernando31611
@Fernando31611 5 жыл бұрын
My Answer: I= Int(0,pi,(xsinx/(3+cos^2(x))= Int(0,pi,(x*sinx/(3+cos^2(x)))= Int(0,pi, x(-arctan(cosx))-int(-arctan(cosx))). Now, I was wondering if (-arctan(cosx)) was simetrical within the range... cos(0) = 1, cos (pi/2)=0, cos(pi)=-1, and is SIMMETRICAL to 0 (with negative values, arctan(-x)=-arctan(x)) then the function is simetrical to pi/2, then int(0,pi,-arctan(cosx))=int(0,pi/2,-arctan(cosx))-int(pi/20,pi,-arctan(cosx))=0. This simplifcation leaves I=(0,pi,x(-arctan(cosx)) = pi*(-arctan(cos(pi))=-pi*arctan(-1)=pi^2/4 Is the symetry assumption correct or just a happy coincidence??
@ChaineYTXF
@ChaineYTXF 5 жыл бұрын
Neat. You just got a new subscriber. :)
@edwardlewandowski5473
@edwardlewandowski5473 3 жыл бұрын
Faktycznie piękna 📯Bóg jest doskonały w Swoich prezentach🙏🕊️📯
@Mathelite-ii4hd
@Mathelite-ii4hd 4 жыл бұрын
great explanation...loved it...
@decentman7555
@decentman7555 4 жыл бұрын
kzbin.info/www/bejne/r5C7qIShmM2qqKc
@donielf1074
@donielf1074 6 жыл бұрын
I must be missing something. The value of the integral is the same even though x=π-u? Why can you just set the integrals equal to each other?
@AKSatMusic
@AKSatMusic 5 жыл бұрын
Because it's definite. You don't have to change the u back to x in your answer because you'll get a numeric answer. If the limits are the same u put the same values in for the variable, giving you the same answer regardless of the variable
@anilsharma-ev2my
@anilsharma-ev2my 4 жыл бұрын
Which figure fulfilled this integral Like shapes of circles and other geometry possesses different curve but original equation related to them draw themselves Which equation gives right angle triangle after integrating 😁😁😁😁😁
@mohdahtishamkhan360
@mohdahtishamkhan360 4 жыл бұрын
this is an easy problem for those who knew integral property.the property says that, Integral of a function F(x) from X=a to X=b is equal to integral of F(a+b-x) from X=a to X=b
@BloobleBonker
@BloobleBonker 5 жыл бұрын
Ingenious!
@anweshaguha7366
@anweshaguha7366 6 жыл бұрын
It's the same as King's property isn't it?
@decentman7555
@decentman7555 4 жыл бұрын
kzbin.info/www/bejne/r5C7qIShmM2qqKc
@sonamthisside
@sonamthisside 4 жыл бұрын
I have watched almost your all vedios. I don't understand why do you not use the properties of definite integration in such integration in your vedios
@decentman7555
@decentman7555 4 жыл бұрын
kzbin.info/www/bejne/r5C7qIShmM2qqKc
@duncanw9901
@duncanw9901 6 жыл бұрын
Pro tip: trig functions follow logarithmic arithmetic Actually did that on an Calc 2 test once...
@JalebJay
@JalebJay 6 жыл бұрын
Are you referring to the strategy of subbing all forms of trig to be the form of e^(ix)?
@Ruby-eq1qg
@Ruby-eq1qg 6 жыл бұрын
Can you elaborate on that a bit?
@JalebJay
@JalebJay 6 жыл бұрын
While I couldn't find a way to use it on this problem. Questions using trig can be solved by replacing cos(x) with Re(e^(ix)). Simple example would be: int(e^x*cos(x)) =Re(int(e^x*(cos(x)+isin(x))) =Re(int(e^x*e^(ix))) =Re(int(e^(x(i+1)))) =Re(e^(x(i+1))/(i+1))+C =Re(e^(x)*(cos(x)+isin(x))*(i-1)/2)+C =Re(e^(x)*(cos(x)+sin(x))+i(sin(x)-cos(x))/2)+C =e^(x)(cos(x)+sin(x))/2+C
@duncanw9901
@duncanw9901 6 жыл бұрын
joking a bit... got confused once during an exam
@vonneumann3592
@vonneumann3592 6 жыл бұрын
Love your vids
@aryan24jan
@aryan24jan 4 жыл бұрын
kzbin.info/www/bejne/r5C7qIShmM2qqKc
@johnhwhittaker6005
@johnhwhittaker6005 4 жыл бұрын
Holy shit! I was able to solve it on my own for the first time 😭😭😭
@janmeetsingh7515
@janmeetsingh7515 4 жыл бұрын
I solved this in less than 2 minutes using properties of definite integration!
@mike4ty4
@mike4ty4 6 жыл бұрын
Neat little problem. I solved it in about 1.5 ks or so just before watching the video and you did it mostly the same way, except that I knew immediately to go for cos^2 because I saw a number plus cos(2x) and thought to save a term of 1 from the 3, to get 2 + (1 + cos(2x)) and then that ever-lovin' cosine-squared identity is very conspicuous, you get 2s all over the place, they drop out, and then it's just a matter of noting the bounds and noting that once you put the x aside you are left with a trig bit that under those given bounds has a nice symmetry.
@markusladen1391
@markusladen1391 4 жыл бұрын
In Russia we call it homework exercise
@vineetsai9971
@vineetsai9971 3 жыл бұрын
this is such a easy problem........a TRUE JEE aspirant will surely know this..... :)
@moussalasfar1512
@moussalasfar1512 3 жыл бұрын
Good
@sagartirthasengupta852
@sagartirthasengupta852 5 жыл бұрын
I gave the 1000th like
@You12783
@You12783 6 жыл бұрын
I remember solving it in my board examination ...used the same steps 😁
@sjsjjf8feirbfjtjfjifofofof417
@sjsjjf8feirbfjtjfjifofofof417 5 жыл бұрын
Don't lie
@ГеройАлександрНевский
@ГеройАлександрНевский 4 жыл бұрын
@@sjsjjf8feirbfjtjfjifofofof417 hahahaha
@sjsjjf8feirbfjtjfjifofofof417
@sjsjjf8feirbfjtjfjifofofof417 4 жыл бұрын
@@ГеройАлександрНевский oh i was hoping it was the original guy providing a sarcastic response :(
@AnkitKumar-im4yt
@AnkitKumar-im4yt 6 жыл бұрын
It was an easy one but you are doing an amazing work hope your channel gets it's due recogniztion
@linguafranca7834
@linguafranca7834 4 жыл бұрын
Beautiful integral 😂😂👌👌☺️
@shikhanshu
@shikhanshu 6 жыл бұрын
so freaking deep
@AimonsL_oignon
@AimonsL_oignon 5 жыл бұрын
Commenting without seeing is the answer π^2/4? OMG It's right!! My board exam(India) just finished and I wasn't even so delighted then!
@CheapPhysics
@CheapPhysics 4 жыл бұрын
I have made this man!!!!!!! Give me a heart ...... Please
@gaurivarshney7971
@gaurivarshney7971 5 жыл бұрын
Got it right
@lp4162
@lp4162 3 жыл бұрын
I solved it in 20 sec just by merely looking at it
@kanishk2345
@kanishk2345 4 жыл бұрын
Evaluate: ln e
@TechToppers
@TechToppers 4 жыл бұрын
Pi²/4... I'm smelling π²/6
@rohanroy9329
@rohanroy9329 4 жыл бұрын
This one's pretty simple
@aryan24jan
@aryan24jan 4 жыл бұрын
kzbin.info/www/bejne/r5C7qIShmM2qqKc
@mohdtauheedkhan6198
@mohdtauheedkhan6198 5 жыл бұрын
Most easiest problem by using properties of integration directly
@xaxion_faza2453
@xaxion_faza2453 4 жыл бұрын
"Sin of you"
@TRIDEXisFun
@TRIDEXisFun 2 жыл бұрын
King rule⚠️
@pyrotas
@pyrotas 6 жыл бұрын
Unnecessarily complicated, although informative. Integration by parts is usually the way to go with forms like x^n * {cos,sin}(x). It also leads to recurrence equations for I and yields a faster solution in my opinion.
@decentman7555
@decentman7555 4 жыл бұрын
kzbin.info/www/bejne/r5C7qIShmM2qqKc
@dssingh3147
@dssingh3147 3 жыл бұрын
I am from India and I solve this problem in just one min.
@silentintegrals9104
@silentintegrals9104 3 жыл бұрын
nice!! 😎
@anilsharma-ev2my
@anilsharma-ev2my 4 жыл бұрын
Graphically Euler equation show what ?😁😭😰
@sachitananda4684
@sachitananda4684 3 жыл бұрын
easy for a class 12th cbse student
@nachiketsharma4507
@nachiketsharma4507 4 жыл бұрын
I solved this in less than 3 minutes
@rudeviper
@rudeviper 4 жыл бұрын
It was a 10 sec problem
@aryan24jan
@aryan24jan 4 жыл бұрын
kzbin.info/www/bejne/r5C7qIShmM2qqKc
@vonneumann3592
@vonneumann3592 6 жыл бұрын
I will be very much grateful to you if you increase the frequency of your video
@mohdtauheedkhan6198
@mohdtauheedkhan6198 5 жыл бұрын
In Allen's sheet
@radhavenkatramanan7001
@radhavenkatramanan7001 5 жыл бұрын
Bro it's too easy. Let's have a harder one next time.
@decentman7555
@decentman7555 4 жыл бұрын
kzbin.info/www/bejne/r5C7qIShmM2qqKc
@aryan24jan
@aryan24jan 4 жыл бұрын
kzbin.info/www/bejne/r5C7qIShmM2qqKc
@xSimonTan
@xSimonTan 3 жыл бұрын
what
@gardening_vibes
@gardening_vibes 4 жыл бұрын
NCERT Example class 12, interesting
@pranav7471
@pranav7471 4 жыл бұрын
This is too basic, Beautiful WTF?? Check out MIT integration BEE if u want to see beautiful integrals.
@harshbaliyan5867
@harshbaliyan5867 4 жыл бұрын
yup property 4 of definite integral is used here
@domc3743
@domc3743 3 жыл бұрын
you used kings property without explicitly mentionting it, sad face
@arpit9134
@arpit9134 3 жыл бұрын
Not very tough for a serious Jee Aspirant
@pranab9465
@pranab9465 6 жыл бұрын
Dude i solved it on paper under 1min
@claytoncoe838
@claytoncoe838 6 жыл бұрын
[X] Doubt
@outofbox000
@outofbox000 4 жыл бұрын
I can sense you are an Asian.
@nicholasheilig3694
@nicholasheilig3694 4 жыл бұрын
His voice is so annoying
@edwardlewandowski5473
@edwardlewandowski5473 3 жыл бұрын
Faktycznie piękna 📯Bóg jest doskonały w Swoich prezentach🙏🕊️📯
What is this Product?!!: MIT Integration Bee (15)
17:24
LetsSolveMathProblems
Рет қаралды 254 М.
Gaussian Integral and Polar Coordinates: MIT Integration Bee (18)
22:17
LetsSolveMathProblems
Рет қаралды 125 М.
If people acted like cats 🙀😹 LeoNata family #shorts
00:22
LeoNata Family
Рет қаралды 43 МЛН
Мен атып көрмегенмін ! | Qalam | 5 серия
25:41
Что-что Мурсдей говорит? 💭 #симбочка #симба #мурсдей
00:19
The evil clown plays a prank on the angel
00:39
超人夫妇
Рет қаралды 46 МЛН
an A5 Putnam Exam integral for calc 2 students
19:10
blackpenredpen
Рет қаралды 428 М.
A Breathtaking Journey of Integration
12:19
LetsSolveMathProblems
Рет қаралды 290 М.
Solving 'impossible' integrals in seconds
6:35
MindYourDecisions
Рет қаралды 1,3 МЛН
A fun functional equation!!
11:13
Michael Penn
Рет қаралды 155 М.
Integral Inside a Limit?!! -- From 2018 Stanford Math Tournament
6:59
LetsSolveMathProblems
Рет қаралды 61 М.
Euler Substitution: MIT Integration Bee (3)
9:37
LetsSolveMathProblems
Рет қаралды 84 М.
Innocent looking, but ????
10:11
blackpenredpen
Рет қаралды 1,2 МЛН
You Need To See This At Least Once
11:47
BriTheMathGuy
Рет қаралды 491 М.
integral of sin(x)/x from 0 to inf by Feynman's Technique
22:44
blackpenredpen
Рет қаралды 1,2 МЛН
A Brilliant Limit
16:58
blackpenredpen
Рет қаралды 1,4 МЛН
If people acted like cats 🙀😹 LeoNata family #shorts
00:22
LeoNata Family
Рет қаралды 43 МЛН