Integration is a form of art itself. It's damn beautiful once you get it to work the way you want it to.
@AayushVarma186 жыл бұрын
Someone rightly said differentiation is a technique, but integration is an art!
@codetrooper92793 жыл бұрын
Yes it is really
@bertiewarner93816 жыл бұрын
You can also do the cos equality first to reduce it to the integral from 0 to pi of xsin(x)/(1+(cosx)^2) dx then make the substitution u=cos(x) which gives the integral (after incorporating minus sign into the limits) from -1 to 1 of arccos(u)/(1+u^2) du. We can now go integration by parts recognising that the bottom is the derivative of arctan(u) to get that the answer is (arccos(u)*arctan(u)) evaluated between -1 and 1 plus the integral from -1 to 1 of arctan(u)/sqrt(1-u^2) du. This gives us pi^2/4 plus the integral but we notice that the integrand is odd and integrated between -1 and 1 so evaluates to 0, therefore our answer is (pi^2)/4
@edmundwoolliams12406 жыл бұрын
I did it differently. I used integration by parts on the original integral to get I = (pi^2)/4 + int(0 to pi, arctan(cosx)dx). Then I used u = pi/2 - x to convert it to I = (pi^2)/4 + int(-pi/2 to pi/2, arctan(sinx)dx), then subbed u = -x to get another equation which I could then add to eliminate the nasty int(-pi/2 to pi/2, arctan(sinx)dx) to leave 2I = (pi^2)/2, and I = (pi^2)/4 . But I think your method was much slicker, it was interesting to see how two separate journeys through integration yielded the same correct result.
@martinepstein98266 жыл бұрын
That's what I did, except you can skip that last substitution because int(-pi/2 to pi/2, arctan(sinx)dx) is the integral of an odd function over a symmetric interval and therefore 0.
@michaelsonntag14696 жыл бұрын
int(0 to pi, arctan(cos(x))dx) is zero due to symmetry reasons.
@pbj41844 жыл бұрын
@@martinepstein9826 I mean, that is how the symmetry argument works. He just proved it when he wanted to use it
@holyshit9225 жыл бұрын
1. Substitution to get interval symmetric over zero 2. Split integrand to even and odd part 3. Use trig identity to expand cos2x 4. Evaluate integral with even part of integrand with substitution and possibly partial fraction decomposition In fact partial fraction decomposition will not be necessary because we will get arctan
@minhazulislam46824 жыл бұрын
I was stuck as I had an x * sinx. I learn today we can solve this problem by changing variables(which helps simplify). I somehow reached the ending similar to this, just that one x wasn't letting me tan^-1. Good one, thanks for making this one.
@HisMajesty996 жыл бұрын
Wow, beautiful
@benburdick98346 жыл бұрын
I love these integration videos so much. Please, I would love to see more!
@decentman75554 жыл бұрын
kzbin.info/www/bejne/r5C7qIShmM2qqKc
@decentman75554 жыл бұрын
you can see here a lot of tricky integration problems solving by short cut method.... see this given link.. kzbin.info/www/bejne/r5C7qIShmM2qqKc
@H2CO3Szifon6 жыл бұрын
from 7:51: you could also observe that the numerator of the remaining integrand is almost the derivative of the denominator, (give or take a factor of -1/2), so its antiderivative is something like -1/2 ln (3 + cos 2u).
@ianrobinson85186 жыл бұрын
Árpád Goretity No, not quite. Differentiate your “solution” and you will have sin(2u) on the numerator.
@H2CO3Szifon6 жыл бұрын
oh, right, it's sin(2u), that might not make things easier, then.
@ianrobinson85186 жыл бұрын
Don’t be embarrassed. I thought I saw the same thing too and was confused for a while how a log could produce the desired result! In fact it produced zero. I eventually tweeked to my error.
@andrewkreisher6896 жыл бұрын
i like this one a lot, one day i hope to compete in the mit integral bee so this is good practice
@ruetata114 жыл бұрын
Any student can compete for mit bee????
@ruetata114 жыл бұрын
Please reply...... 🤨🤨
@Ty-sc2ri4 жыл бұрын
@@ruetata11 what do you think?
@ruetata114 жыл бұрын
@@Ty-sc2ri IDK, I GUESS ONLY MIT STUDENT CAN APPLY
@pinsonraphael4873 Жыл бұрын
Great video! This is a special case of a result for symmetrical functions: if f satisfies f( a + b - x) = f(x) (meaning it has an axis of symmetry at x = (a+b)/2) , then the integral of xf(x) from a to b is equal to (a+b)/2 times integral of f(x) from a to b. Applying this to f(x) = 2sin(x)/(3+cos(2x)) immediately yields the result because it satisfies f(pi - x) = f(x). I think you even proved this result on your channel in another video to solve a difficult-looking integral
@iamtrash2884 жыл бұрын
I solved it like this(got bored typing halfway thru so sorry) we could expand 3 + cos(2x) to 2(1 + (cos(x))^2), eliminate the 2 above and below and get the integrand (x*sinx*dx)/(1+(cosx)^2). u = cosx => du = sinx*dx (we have it already) u(pi) = -1 u(0) = 1 so we have a definite integral from 1 to -1 of arccos(u)/(1+u^2) integrating it by parts we get - integral from -1 to 1 of arctan(u)/sqrt(1 - u^2) but notice that atctan is an odd function while the expression below is even. Add the fact that we have a symmetric interval and we get that this integral is actually equal to zero and we get the answer (written in blabla)
@HeyKevinYT4 жыл бұрын
okk
@AakashKumar-by6gi6 жыл бұрын
Your maths is beautiful. I'm in love with it!!!!!!!!!!!!!
@rickybobby55846 жыл бұрын
nice and by the way because the integrand is an even function, we can find the integral for limits from 0 to pi/2 by dividing the final answer by 2
@terry_tamali5 жыл бұрын
You can simply apply the limit formula of definite integrals, get rid of the x, convert cos2x into 2 cos^2x -1, take 2 outside from the denominator, then substitute t for cosx - there ya have it!!
@closed12094 жыл бұрын
omg this is exactly one of my homework , you save my life thank you so much
@beoptimistic58533 жыл бұрын
kzbin.info/www/bejne/joKsk6FobMmCoKc 💐💐
@duncanw99016 жыл бұрын
I often wonder on these tests if they would allow you to solve them using laplace-inverse-laplace stuff.
@decentman75554 жыл бұрын
kzbin.info/www/bejne/r5C7qIShmM2qqKc
@maalikserebryakov Жыл бұрын
What do you mean
@outofbox0004 жыл бұрын
Man that was a beauty.
@sunitajha75963 жыл бұрын
Well, it was easy. But very elegant. I initially tried integration by parts, but the problem became trivial when I replaced x by π - x and added.
@dydx37416 жыл бұрын
really amazing ... so soothing and satisfying
@aryan24jan4 жыл бұрын
kzbin.info/www/bejne/r5C7qIShmM2qqKc
@theoleblanc97616 жыл бұрын
I did it like that: first remplace cos2x by 2cos^2x-1, you get: int btw 0/π of xsinx/(1+(cosx)^2) Sub cosx by u you get: int btw -1/1 of arccos(u)/(1+u^2) Integration by part and you get: arccos(u)arctan(u) btw -1/1 + int btw -1/1 of arctan(u)/√(1-u^2) the intergral part is 0 because it is odd, Finally you get π^2/4 👍 Really nice integral! Thank you! Your method is really nice, it is really important to see symmetries like this one on cosine and sine functions!
@wedemeyermath48966 жыл бұрын
When I first came across this problem, I uploaded a solution video as well. This is one of my favorite integrals :)
@dydx37416 жыл бұрын
yes i watched your video :)
@computergenius3655 жыл бұрын
This is so beautiful
@shenal81673 жыл бұрын
This is beauti of maths
@silentintegrals91043 жыл бұрын
totally agree!
@tgx35292 жыл бұрын
Integral= integral x* sinx/(1+ ( cosx)^2) dx on (0;π). Primitive function to sinx/(1+(cosx)^2) is function - arctg( cosx). Then se can use metod by parts [ x*(- arctg( cosx)] + integral arctg( cosx))dx , this integral Is eq. zero on(0;π). We get result π*π/4.
@نعمللوحدة5 жыл бұрын
Beautiful
@beoptimistic58533 жыл бұрын
kzbin.info/www/bejne/joKsk6FobMmCoKc 💐💐
@anshumansahu10876 жыл бұрын
the day you learn to apply integration to real life problems you can say u have understood integration properly. Till then keep practicing as you still have a long way to go.
@LetsSolveMathProblems6 жыл бұрын
Although mathematics is certainly valuable in many areas of sciences (notably physics), I would like to respectfully disagree with your assertion. Mathematics should not be treated as a foundation only existent to merely allow other scientific fields to flourish; rather, it should be seen as a picturesque garden harboring and giving birth to its own flowers of elegance. Perhaps the flowers blossoming in beauty are not necessarily applicable to life--yet, who would dare to argue they should be ignored and thrashed when they are inherently a form of art? Take set theory for example. So far, physics has yet to illustrate the direct physical application of set theory. Nevertheless, set theory forms the ultimate foundation for modern pure math! Not only that, set theory has given birth to a myriad of elegant suppositions about infinity. Same applies for integration. Sure, the nature of integration (that it reverses the rate of change process) makes it an important tool for modeling real life phenomena (Maxwell's equations, displacement, impulse, work, divergence theorem, and many, many more physics laws and equations are based on integration). Yet, just purely by itself, integration is beautiful, exciting, and fun. In the end, the joy of pure math comes from, of course, the joy of it by itself, not necessarily from its connection to real life. Once one truly appreciates the intricate nature of integrals (and other mathematical manifestation of universe and human thought), I think one has accomplished a long journey, not having "a long way to go" in the sense of not having "understood it properly."
@anshumansahu10876 жыл бұрын
LetsSolveMathProblems well I think you have taken this statement of mine as a dig on you but it is not so. It is for all of us in general. Sorry if I have caused any offence.
@LetsSolveMathProblems6 жыл бұрын
I apologize if I sounded too sensitive or critical; that was not the intention. I personally have always pondered the relationship between applied and pure mathematics, and I thought you provided a good stimulus for a friendly discussion. I appreciate commenters like you who go beyond the topic at hand to discuss a more general picture. And, as you astutely remarked, it is true that for many viewers (especially those with certain occupations) that applied side of integration is more valuable. Again, I apologize if my tone came out to be censorious. Thank you so much for sharing your opinions! =)
@YASHGUPTA-ft7mz3 жыл бұрын
You can use the fact that integral.f(x) ( a to b )= integral.f(a+b-x) this would surely cut x and we will end up a simple trignometric integral . :)
@MiguelFernandez-ix8mi6 жыл бұрын
Awesome video! Thank you!
@decentman75554 жыл бұрын
kzbin.info/www/bejne/r5C7qIShmM2qqKc
@pooydragon53985 жыл бұрын
It's pretty easy if you know that integral of f(x)dx from a to b = integral of f(a+b-x)dx from a to b. Then just do what he did. I learnt it as first property of definite integration.
@aryan24jan4 жыл бұрын
kzbin.info/www/bejne/r5C7qIShmM2qqKc
@0-1min113 жыл бұрын
IIT students can solve it without touching the pen . Experimentally determined.
@vanchhitdubey6 жыл бұрын
Use property I(x) = I(π-x) U will get one more I on the RHS with a simple function to integrate Write cos2x = 2cos^2x -1 Take 2 common and cancel it Take cosx =t substitution Integrate easily integration will be tan^-1x , limit changed to 1 to -1 Put limit and finally I = pi^2/4
@sauravthegreat85335 жыл бұрын
Couldn’t you use the formula where if the numerator is a differential of the denominator, the integral of that function is ln(denominator), after making some changes of course like multiplying by -2?
@tukarampawar43022 жыл бұрын
Apply kings property and then substitute sine as t
@anilsharma-ev2my4 жыл бұрын
What is relationship between function and it's intergreled equation So we find a simple percentage and get rid of lengthy calculation
@beoptimistic58533 жыл бұрын
kzbin.info/www/bejne/joKsk6FobMmCoKc 💐💐
@AliAbdalla4 жыл бұрын
(pi^2)/8 numerically
@beoptimistic58533 жыл бұрын
kzbin.info/www/bejne/joKsk6FobMmCoKc 💐💐
@willli9529 Жыл бұрын
i solved it using kings property, first my trigonometrically simplifying the integral to I = int from 0 to pi of 2xsinx/(3 + 2(cosx)^2-1) dx or int from 0 to pi of xsinx/((cosx)^2+1) dx. applying kings property this becomes I = int from 0 to pi of (pi-x) sin(pi-x)/((cos(pi-x))^2+1) dx, or simplified trigonometrically to I = int from 0 to pi of (pi-x) sinx/((cosx)^2+1) dx. adding the original I to the version with king's property applied yields 2I = int from 0 to pi of (x + pi -x)sinx/((cosx)^2+1) dx) which equals int from 0 to pi of pisinx/((cosx)^2+1) dx. from here it is just a u-sub with u = cosx and du = -sinx dx, and the evaluated indefinite integral is pi* -arctan(cosx). plugging in bounds of integration yields 2I = -pi * (-pi/4-pi/4) or (pi^2)/2; thus I = (pi^2)/4
@Fernando316115 жыл бұрын
My Answer: I= Int(0,pi,(xsinx/(3+cos^2(x))= Int(0,pi,(x*sinx/(3+cos^2(x)))= Int(0,pi, x(-arctan(cosx))-int(-arctan(cosx))). Now, I was wondering if (-arctan(cosx)) was simetrical within the range... cos(0) = 1, cos (pi/2)=0, cos(pi)=-1, and is SIMMETRICAL to 0 (with negative values, arctan(-x)=-arctan(x)) then the function is simetrical to pi/2, then int(0,pi,-arctan(cosx))=int(0,pi/2,-arctan(cosx))-int(pi/20,pi,-arctan(cosx))=0. This simplifcation leaves I=(0,pi,x(-arctan(cosx)) = pi*(-arctan(cos(pi))=-pi*arctan(-1)=pi^2/4 Is the symetry assumption correct or just a happy coincidence??
@ChaineYTXF5 жыл бұрын
Neat. You just got a new subscriber. :)
@edwardlewandowski54733 жыл бұрын
Faktycznie piękna 📯Bóg jest doskonały w Swoich prezentach🙏🕊️📯
@Mathelite-ii4hd4 жыл бұрын
great explanation...loved it...
@decentman75554 жыл бұрын
kzbin.info/www/bejne/r5C7qIShmM2qqKc
@donielf10746 жыл бұрын
I must be missing something. The value of the integral is the same even though x=π-u? Why can you just set the integrals equal to each other?
@AKSatMusic5 жыл бұрын
Because it's definite. You don't have to change the u back to x in your answer because you'll get a numeric answer. If the limits are the same u put the same values in for the variable, giving you the same answer regardless of the variable
@anilsharma-ev2my4 жыл бұрын
Which figure fulfilled this integral Like shapes of circles and other geometry possesses different curve but original equation related to them draw themselves Which equation gives right angle triangle after integrating 😁😁😁😁😁
@mohdahtishamkhan3604 жыл бұрын
this is an easy problem for those who knew integral property.the property says that, Integral of a function F(x) from X=a to X=b is equal to integral of F(a+b-x) from X=a to X=b
@BloobleBonker5 жыл бұрын
Ingenious!
@anweshaguha73666 жыл бұрын
It's the same as King's property isn't it?
@decentman75554 жыл бұрын
kzbin.info/www/bejne/r5C7qIShmM2qqKc
@sonamthisside4 жыл бұрын
I have watched almost your all vedios. I don't understand why do you not use the properties of definite integration in such integration in your vedios
@decentman75554 жыл бұрын
kzbin.info/www/bejne/r5C7qIShmM2qqKc
@duncanw99016 жыл бұрын
Pro tip: trig functions follow logarithmic arithmetic Actually did that on an Calc 2 test once...
@JalebJay6 жыл бұрын
Are you referring to the strategy of subbing all forms of trig to be the form of e^(ix)?
@Ruby-eq1qg6 жыл бұрын
Can you elaborate on that a bit?
@JalebJay6 жыл бұрын
While I couldn't find a way to use it on this problem. Questions using trig can be solved by replacing cos(x) with Re(e^(ix)). Simple example would be: int(e^x*cos(x)) =Re(int(e^x*(cos(x)+isin(x))) =Re(int(e^x*e^(ix))) =Re(int(e^(x(i+1)))) =Re(e^(x(i+1))/(i+1))+C =Re(e^(x)*(cos(x)+isin(x))*(i-1)/2)+C =Re(e^(x)*(cos(x)+sin(x))+i(sin(x)-cos(x))/2)+C =e^(x)(cos(x)+sin(x))/2+C
@duncanw99016 жыл бұрын
joking a bit... got confused once during an exam
@vonneumann35926 жыл бұрын
Love your vids
@aryan24jan4 жыл бұрын
kzbin.info/www/bejne/r5C7qIShmM2qqKc
@johnhwhittaker60054 жыл бұрын
Holy shit! I was able to solve it on my own for the first time 😭😭😭
@janmeetsingh75154 жыл бұрын
I solved this in less than 2 minutes using properties of definite integration!
@mike4ty46 жыл бұрын
Neat little problem. I solved it in about 1.5 ks or so just before watching the video and you did it mostly the same way, except that I knew immediately to go for cos^2 because I saw a number plus cos(2x) and thought to save a term of 1 from the 3, to get 2 + (1 + cos(2x)) and then that ever-lovin' cosine-squared identity is very conspicuous, you get 2s all over the place, they drop out, and then it's just a matter of noting the bounds and noting that once you put the x aside you are left with a trig bit that under those given bounds has a nice symmetry.
@markusladen13914 жыл бұрын
In Russia we call it homework exercise
@vineetsai99713 жыл бұрын
this is such a easy problem........a TRUE JEE aspirant will surely know this..... :)
@moussalasfar15123 жыл бұрын
Good
@sagartirthasengupta8525 жыл бұрын
I gave the 1000th like
@You127836 жыл бұрын
I remember solving it in my board examination ...used the same steps 😁
@sjsjjf8feirbfjtjfjifofofof4175 жыл бұрын
Don't lie
@ГеройАлександрНевский4 жыл бұрын
@@sjsjjf8feirbfjtjfjifofofof417 hahahaha
@sjsjjf8feirbfjtjfjifofofof4174 жыл бұрын
@@ГеройАлександрНевский oh i was hoping it was the original guy providing a sarcastic response :(
@AnkitKumar-im4yt6 жыл бұрын
It was an easy one but you are doing an amazing work hope your channel gets it's due recogniztion
@linguafranca78344 жыл бұрын
Beautiful integral 😂😂👌👌☺️
@shikhanshu6 жыл бұрын
so freaking deep
@AimonsL_oignon5 жыл бұрын
Commenting without seeing is the answer π^2/4? OMG It's right!! My board exam(India) just finished and I wasn't even so delighted then!
@CheapPhysics4 жыл бұрын
I have made this man!!!!!!! Give me a heart ...... Please
@gaurivarshney79715 жыл бұрын
Got it right
@lp41623 жыл бұрын
I solved it in 20 sec just by merely looking at it
@kanishk23454 жыл бұрын
Evaluate: ln e
@TechToppers4 жыл бұрын
Pi²/4... I'm smelling π²/6
@rohanroy93294 жыл бұрын
This one's pretty simple
@aryan24jan4 жыл бұрын
kzbin.info/www/bejne/r5C7qIShmM2qqKc
@mohdtauheedkhan61985 жыл бұрын
Most easiest problem by using properties of integration directly
@xaxion_faza24534 жыл бұрын
"Sin of you"
@TRIDEXisFun2 жыл бұрын
King rule⚠️
@pyrotas6 жыл бұрын
Unnecessarily complicated, although informative. Integration by parts is usually the way to go with forms like x^n * {cos,sin}(x). It also leads to recurrence equations for I and yields a faster solution in my opinion.
@decentman75554 жыл бұрын
kzbin.info/www/bejne/r5C7qIShmM2qqKc
@dssingh31473 жыл бұрын
I am from India and I solve this problem in just one min.
@silentintegrals91043 жыл бұрын
nice!! 😎
@anilsharma-ev2my4 жыл бұрын
Graphically Euler equation show what ?😁😭😰
@sachitananda46843 жыл бұрын
easy for a class 12th cbse student
@nachiketsharma45074 жыл бұрын
I solved this in less than 3 minutes
@rudeviper4 жыл бұрын
It was a 10 sec problem
@aryan24jan4 жыл бұрын
kzbin.info/www/bejne/r5C7qIShmM2qqKc
@vonneumann35926 жыл бұрын
I will be very much grateful to you if you increase the frequency of your video
@mohdtauheedkhan61985 жыл бұрын
In Allen's sheet
@radhavenkatramanan70015 жыл бұрын
Bro it's too easy. Let's have a harder one next time.
@decentman75554 жыл бұрын
kzbin.info/www/bejne/r5C7qIShmM2qqKc
@aryan24jan4 жыл бұрын
kzbin.info/www/bejne/r5C7qIShmM2qqKc
@xSimonTan3 жыл бұрын
what
@gardening_vibes4 жыл бұрын
NCERT Example class 12, interesting
@pranav74714 жыл бұрын
This is too basic, Beautiful WTF?? Check out MIT integration BEE if u want to see beautiful integrals.
@harshbaliyan58674 жыл бұрын
yup property 4 of definite integral is used here
@domc37433 жыл бұрын
you used kings property without explicitly mentionting it, sad face
@arpit91343 жыл бұрын
Not very tough for a serious Jee Aspirant
@pranab94656 жыл бұрын
Dude i solved it on paper under 1min
@claytoncoe8386 жыл бұрын
[X] Doubt
@outofbox0004 жыл бұрын
I can sense you are an Asian.
@nicholasheilig36944 жыл бұрын
His voice is so annoying
@edwardlewandowski54733 жыл бұрын
Faktycznie piękna 📯Bóg jest doskonały w Swoich prezentach🙏🕊️📯