Limit at infinity of factorial and exponential function

  Рет қаралды 37,993

Prime Newtons

Prime Newtons

Күн бұрын

Пікірлер: 85
@josephmartos
@josephmartos 7 ай бұрын
Your way of explaining this was so beautiful :)
@KahlieNiven
@KahlieNiven 7 ай бұрын
Great video to teach how to formalize an intuition.
@ECela-yw9sq
@ECela-yw9sq Жыл бұрын
Love your chalks and your math, keep up with the good work!
@Arkapravo
@Arkapravo 8 ай бұрын
Cool method! You are a great teacher.
@MekibebGebre
@MekibebGebre Жыл бұрын
Your teaching is excellent and I tell you to make videos about formal proof of limits and continuity involving radicals and denominator
@PrimeNewtons
@PrimeNewtons Жыл бұрын
I already have those videos. Thanks
@Orillians
@Orillians 11 ай бұрын
BRO UR TOO GOOD AT TEACING MAN. @@PrimeNewtons
@ThetrueIdiot6969
@ThetrueIdiot6969 11 ай бұрын
i wonder why these educational videos get no views, even a stupid game play video can get higher view( those videos aren't fun or educational at all ) your content deserves more views
@davidbrisbane7206
@davidbrisbane7206 9 ай бұрын
Note ... 6^n/3^n < n!/3^n, where n > = 9. Now lim (6^n)/(3^n), as n goes to infinity = limit 2^n, as n goes to infinity, and this limit is infinite, hence the limit ( n!/3^), as n goes to infinity is also infinity .
@nothingbutmathproofs7150
@nothingbutmathproofs7150 4 ай бұрын
Sweet method. I really liked it.
@avi6n
@avi6n 9 ай бұрын
Incredibly helpful, thank you 🙏
@cliffordabrahamonyedikachi8175
@cliffordabrahamonyedikachi8175 9 ай бұрын
You are doing well.
@weslinpenacamacho1075
@weslinpenacamacho1075 11 ай бұрын
I really like this exercise, thanks
@GreenMeansGOF
@GreenMeansGOF 6 ай бұрын
I usually use Stirling’s formula for these kinds if problems but this is better, especially if we have to prove the limit by definition.
@steftetane
@steftetane Жыл бұрын
Thanks for another great math video. What about the limit of n!/n^n ?
@hydroarx
@hydroarx Жыл бұрын
n^n = n×n×n×n×n×... Whereas n! = n×(n-1)×(n-2)×(n-3)×... n^n is clearly bigger So this limit approaches 0
@italixgaming915
@italixgaming915 Жыл бұрын
To make your proof perfectly clean, you should write that you consider the case n>5 otherwise the part you're deleting doesn't exist. Anyway, you don't need to develop everything. Let's call a(n)=n!/3^n. You have: a(n+1)/a(n)=[(n+1)!/n!].[3^n/3^(n+1)]=(n+1)/3. So a(n) is a rising series. You can also say that a(n+1)=a(n).(n+1)/3 => a(n+1)-a(n)=a(n)/3 and since a(n) is rising, so does a(n+1)-a(n). But by the definition of the limit, a series can't converge if the difference between its consecutive values becomes greater and greater. So the series diverges. And since it's rising, its limit must be +inf. Last method, even quicker: The answer was on your tee-shirt from the beginning.
@nicolas.montero4941
@nicolas.montero4941 4 ай бұрын
you are the man
@isidorolorenzo802
@isidorolorenzo802 11 ай бұрын
Just a smooth remark, my dear friend. It's a matter of notation: as infinity is not a number (except in the dual space), you can't stand a limit equal to infinity but tending to infinity. 😏👍
@joaomane4831
@joaomane4831 Ай бұрын
This is wrong. A limit can be equal to Infinity, that's the whole concept of a limit. Now the function itself or the sequence, must be approaching infinity and not be equal to Infinity due to the reasons you stated.
@TheMasterGreen
@TheMasterGreen 7 ай бұрын
correct me if I am wrong but isn't it obvious that the numerator is clearly greater than the denominator when n --> inf therefore implying that it approaches +infinity? Or am I wrong?
@John-uo5tm
@John-uo5tm 4 ай бұрын
Cool limit! For some real fun, replace the 3 with n. 😊
@davidcarras4743
@davidcarras4743 Жыл бұрын
Another great video!
@AbouTaim-Lille
@AbouTaim-Lille 9 ай бұрын
The factorial function is stronger than any power function a^x ,a>1. It can be shown if we calculate the limit of I(n) = x(n)/x(n+1),were x(n) = n!/a^n, a>1. We have : I(n) = (n!/ a^n )/ (n+1)!/a^n+1 = n!/(n+1)!. a = a/n+1 -->0 when n-->∞. Which makes it easy to see that x(n) is strongly decreasing even for the large values of a. To be honest the product a^n. n! is compared with n^n.
@مسعودکشاورز-ب2ص
@مسعودکشاورز-ب2ص 6 ай бұрын
very very nice.
@cameroncurtis7261
@cameroncurtis7261 Жыл бұрын
Always remember, the only thing bigger than a factorial is another factorial 😅
@Cubowave
@Cubowave Жыл бұрын
Tetration: 👁️
@juergenilse3259
@juergenilse3259 Жыл бұрын
I beg to differ: I think, the "ackermann function" is growing much faster than simple factorial ... en.wikipedia.org/wiki/Ackermann_function 😇
@btb2954
@btb2954 Жыл бұрын
x^x
@taito404
@taito404 11 ай бұрын
​@@Cubowave Pentation🗿
@Cubowave
@Cubowave 11 ай бұрын
@@taito404 septation: (idk if that exists)
@kanizfatema6907
@kanizfatema6907 11 ай бұрын
Sir , kindly make a full course on limit and calculas😢😢😢😢
@samyaksharma2550
@samyaksharma2550 11 ай бұрын
ratio test is saviour
@michaelstahl1515
@michaelstahl1515 9 ай бұрын
Nice proof , really !
@aguyontheinternet8436
@aguyontheinternet8436 Жыл бұрын
I mean, imagine the fraction n!/(3^n). What does it equal, who knows, just needs to be greater than 0. Now look at the fraction when you increase n by 1 (n!)/(3^n) * (n+1)(3) So for any n>3, this function will grow larger, making the limit infinity as n gets larger and larger. Edit: watching the video, that was the exact thing you took advantage of
@roddos
@roddos 9 ай бұрын
Great.
@saidnajarro
@saidnajarro 6 ай бұрын
I love you!
@wes9627
@wes9627 10 ай бұрын
Stirling's approximation states that ln(n!) is approximately equal to n*ln(n)-n Thus, ln(n!/3^n) is approximately n*ln(n)-n-n*ln3=n[ln(n)-1-ln3], which tends to ∞ as n→∞ Therefore n!/3^n→∞ as n→∞
@timetraveller2818
@timetraveller2818 9 ай бұрын
a neater answer would be to probably to prove Stirling's approximation and then write just as you would say but this is also beautifully elegant Edit:Just realized that I didn't write to prove.
@brunoporcu3207
@brunoporcu3207 10 ай бұрын
Sorry, I dont understand the equal. If I delete that terms it shouldn't just be major? Thank you so much
@vishalmishra3046
@vishalmishra3046 18 күн бұрын
You're multiplying an ever increasing large number to the numerator but matching it with just multiplying a 3 to the denominator. So, there is no limit to how big the numerator grows while denominator is just 3 more times of the previous denominator. So the result has to grow into positive infinity with no other choice.
@bogusawsroda3747
@bogusawsroda3747 9 ай бұрын
1:10 nice man
@juergenilse3259
@juergenilse3259 Жыл бұрын
I would look at the cases wit n>6: n!/3^n=(1*2*3*3*5*6)/3^6*product(i)/product(3) i=7 to n Let C=(1*2*3*4*5*6)/3^6 n!/3^n=C*product(i)/product(3) i=7 to n > C*product(6)/product(3) i=7 to n = C*product(6/3) i=7 to n = C*(6/3)^n = C*2^n So lim(n!/3^n) > lim(C*2^n) = C*li(2^n) = infinity As you can see, lim(n!/3^n) diverges at least as fast as C*lim(2^n) with some constant C>0. In the video, it was shown, that lim(n!/3^n) diverges faster than lim(1/27*n), but in fact, it diverges not only faster than a linear term, it diverges even faster than an exponential term with base larger than 1.
@bradfoster6092
@bradfoster6092 Жыл бұрын
Hell yea!
@WillBillDillPickle
@WillBillDillPickle 8 ай бұрын
Who else is here from O'leary's Infinite Series Sheet?
@mathbrah
@mathbrah 8 ай бұрын
me lol
@guest2649
@guest2649 4 ай бұрын
i just thought of it like 3^n = 3*3*3.. while as n! = 1*2*3*4*5.. So as only 2 products are less than the 3^n product, n! would take over 3^n quite fast
@colina64
@colina64 Жыл бұрын
COOL
@jam9339
@jam9339 Жыл бұрын
♾️
@dpmike32819
@dpmike32819 Жыл бұрын
What about using the ratio test
@PrimeNewtons
@PrimeNewtons Жыл бұрын
Sadly, the topic this student was dealing with was limits. So I couldn't even mention Ratio test.
@ayanahmed5114
@ayanahmed5114 Жыл бұрын
is the factorial function differentiable
@davidg5898
@davidg5898 Жыл бұрын
It is not. Only continuous functions are differentiable. The factorial function fails that test because it is only defined for integers (non-negative integers, specifically). You can do a bit of mathemagic to come up with something akin to what you're asking by taking the derivative of the gamma function (a continuous version of the factorial function) and evaluating it at integer values.
@chendingbang1536
@chendingbang1536 11 ай бұрын
stirling approximation!
@dpmike32819
@dpmike32819 11 ай бұрын
What about the ratio test? Easier
@vp_arth
@vp_arth 9 ай бұрын
That limit is just 2 * (3/3) * (4/3) * (5/3) * infinite serie of more than one members
@anghme28ang11
@anghme28ang11 Ай бұрын
6:49 why is the inequality like so, why can it be equal to
@anghme28ang11
@anghme28ang11 Ай бұрын
Also doesnt diverge not mean infinity
@swampfolk2526
@swampfolk2526 10 ай бұрын
Ну вообще этот предел очевиден без просмотра видео. Факториал каждым следующим N домножает на N предыдущий результат, а знаменатель каждое следующее N домножается на 3. очевидно что при бесконечности множитель будет последний как бесконечность деленная на 3, что есть бесконечность. Т.е. предел бесконечный очевидно.
@maciejterakowski9062
@maciejterakowski9062 8 ай бұрын
I need 3 sec. to find the result
@FrancisHealy-w9f
@FrancisHealy-w9f 11 ай бұрын
This is so obvious. How could this take more than ten seconds? Let fsubn(n) = (n/3) * fsubn-1). This clearly diverges as n gets big.
@ivandeneriev7500
@ivandeneriev7500 Жыл бұрын
X!=840 how to solve (not graphically)
@rubixmc7320
@rubixmc7320 11 ай бұрын
Use the gamma function. It is an integral, so you’ll need to look it up. Γ(n) = (n-1)! So just solve Γ(n+1) = 840
@Yougottacryforthis
@Yougottacryforthis 11 ай бұрын
No solution
@ubiraceelihimas
@ubiraceelihimas 9 ай бұрын
esta muito rápido sem explicar
@arolimarcellinus8541
@arolimarcellinus8541 8 ай бұрын
why lots of limit problems need to assume that HS student passed their analysis class?? No one ever take mathematical analysis, but those limits problems force us to use it if we cannot use L'Hospital. Limit problems is the source of why students hate math. Because math teacher doesn't even teach analysis properly, especially in inequalities. Can you imagine how many students in the class that can make the inequality postulate (n!)/3^n >= (1*2*n)/(3*3*3)?? I can bet my 100 bucks it will be less than 10 in regular classes.
@koenigtiger6550
@koenigtiger6550 4 ай бұрын
Ну это очень простая задача. Я её решил за несколько секунд в уме.
@dmihovilovic
@dmihovilovic 9 ай бұрын
This looks too complicated.....n! is n(n-1)(n-2)....*1, therefore for a very large n,, n! will look like n^n. Then n!/3^n = n^n/3^n = (n/3)^n that tends to infinity when n tends to infinity.
@alfredopi8699
@alfredopi8699 9 ай бұрын
SI può ottenere lo stesso risultato più velocemente sostituendo n! con la Formula di Stirling valida per "n grande"
@mathbrah
@mathbrah 8 ай бұрын
Who else is here from O'leary's Infinite Series Sheet?
Limit at infinity
13:35
Prime Newtons
Рет қаралды 16 М.
f(x+1) = f(x+2) +1
10:34
Prime Newtons
Рет қаралды 222 М.
World’s strongest WOMAN vs regular GIRLS
00:56
A4
Рет қаралды 4,5 МЛН
How it feels when u walk through first class
00:52
Adam W
Рет қаралды 26 МЛН
Osman Kalyoncu Sonu Üzücü Saddest Videos Dream Engine 275 #shorts
00:29
Сюрприз для Златы на день рождения
00:10
Victoria Portfolio
Рет қаралды 2,7 МЛН
Lambert W Function
14:35
Prime Newtons
Рет қаралды 657 М.
Limit of a rational exponential function
16:45
Prime Newtons
Рет қаралды 9 М.
How Math Becomes Difficult
39:19
MAKiT
Рет қаралды 155 М.
Functional Equation
14:15
Prime Newtons
Рет қаралды 392 М.
Finding the domain of x^x (my attempt)
12:30
blackpenredpen
Рет қаралды 38 М.
on the product of all natural numbers...
21:07
Michael Penn
Рет қаралды 19 М.
A Brilliant Limit
16:58
blackpenredpen
Рет қаралды 1,4 МЛН
A guide to our alphabet
20:08
RobWords
Рет қаралды 223 М.
World’s strongest WOMAN vs regular GIRLS
00:56
A4
Рет қаралды 4,5 МЛН