Great video to teach how to formalize an intuition.
@ECela-yw9sq Жыл бұрын
Love your chalks and your math, keep up with the good work!
@Arkapravo8 ай бұрын
Cool method! You are a great teacher.
@MekibebGebre Жыл бұрын
Your teaching is excellent and I tell you to make videos about formal proof of limits and continuity involving radicals and denominator
@PrimeNewtons Жыл бұрын
I already have those videos. Thanks
@Orillians11 ай бұрын
BRO UR TOO GOOD AT TEACING MAN. @@PrimeNewtons
@ThetrueIdiot696911 ай бұрын
i wonder why these educational videos get no views, even a stupid game play video can get higher view( those videos aren't fun or educational at all ) your content deserves more views
@davidbrisbane72069 ай бұрын
Note ... 6^n/3^n < n!/3^n, where n > = 9. Now lim (6^n)/(3^n), as n goes to infinity = limit 2^n, as n goes to infinity, and this limit is infinite, hence the limit ( n!/3^), as n goes to infinity is also infinity .
@nothingbutmathproofs71504 ай бұрын
Sweet method. I really liked it.
@avi6n9 ай бұрын
Incredibly helpful, thank you 🙏
@cliffordabrahamonyedikachi81759 ай бұрын
You are doing well.
@weslinpenacamacho107511 ай бұрын
I really like this exercise, thanks
@GreenMeansGOF6 ай бұрын
I usually use Stirling’s formula for these kinds if problems but this is better, especially if we have to prove the limit by definition.
@steftetane Жыл бұрын
Thanks for another great math video. What about the limit of n!/n^n ?
@hydroarx Жыл бұрын
n^n = n×n×n×n×n×... Whereas n! = n×(n-1)×(n-2)×(n-3)×... n^n is clearly bigger So this limit approaches 0
@italixgaming915 Жыл бұрын
To make your proof perfectly clean, you should write that you consider the case n>5 otherwise the part you're deleting doesn't exist. Anyway, you don't need to develop everything. Let's call a(n)=n!/3^n. You have: a(n+1)/a(n)=[(n+1)!/n!].[3^n/3^(n+1)]=(n+1)/3. So a(n) is a rising series. You can also say that a(n+1)=a(n).(n+1)/3 => a(n+1)-a(n)=a(n)/3 and since a(n) is rising, so does a(n+1)-a(n). But by the definition of the limit, a series can't converge if the difference between its consecutive values becomes greater and greater. So the series diverges. And since it's rising, its limit must be +inf. Last method, even quicker: The answer was on your tee-shirt from the beginning.
@nicolas.montero49414 ай бұрын
you are the man
@isidorolorenzo80211 ай бұрын
Just a smooth remark, my dear friend. It's a matter of notation: as infinity is not a number (except in the dual space), you can't stand a limit equal to infinity but tending to infinity. 😏👍
@joaomane4831Ай бұрын
This is wrong. A limit can be equal to Infinity, that's the whole concept of a limit. Now the function itself or the sequence, must be approaching infinity and not be equal to Infinity due to the reasons you stated.
@TheMasterGreen7 ай бұрын
correct me if I am wrong but isn't it obvious that the numerator is clearly greater than the denominator when n --> inf therefore implying that it approaches +infinity? Or am I wrong?
@John-uo5tm4 ай бұрын
Cool limit! For some real fun, replace the 3 with n. 😊
@davidcarras4743 Жыл бұрын
Another great video!
@AbouTaim-Lille9 ай бұрын
The factorial function is stronger than any power function a^x ,a>1. It can be shown if we calculate the limit of I(n) = x(n)/x(n+1),were x(n) = n!/a^n, a>1. We have : I(n) = (n!/ a^n )/ (n+1)!/a^n+1 = n!/(n+1)!. a = a/n+1 -->0 when n-->∞. Which makes it easy to see that x(n) is strongly decreasing even for the large values of a. To be honest the product a^n. n! is compared with n^n.
@مسعودکشاورز-ب2ص6 ай бұрын
very very nice.
@cameroncurtis7261 Жыл бұрын
Always remember, the only thing bigger than a factorial is another factorial 😅
@Cubowave Жыл бұрын
Tetration: 👁️
@juergenilse3259 Жыл бұрын
I beg to differ: I think, the "ackermann function" is growing much faster than simple factorial ... en.wikipedia.org/wiki/Ackermann_function 😇
@btb2954 Жыл бұрын
x^x
@taito40411 ай бұрын
@@Cubowave Pentation🗿
@Cubowave11 ай бұрын
@@taito404 septation: (idk if that exists)
@kanizfatema690711 ай бұрын
Sir , kindly make a full course on limit and calculas😢😢😢😢
@samyaksharma255011 ай бұрын
ratio test is saviour
@michaelstahl15159 ай бұрын
Nice proof , really !
@aguyontheinternet8436 Жыл бұрын
I mean, imagine the fraction n!/(3^n). What does it equal, who knows, just needs to be greater than 0. Now look at the fraction when you increase n by 1 (n!)/(3^n) * (n+1)(3) So for any n>3, this function will grow larger, making the limit infinity as n gets larger and larger. Edit: watching the video, that was the exact thing you took advantage of
@roddos9 ай бұрын
Great.
@saidnajarro6 ай бұрын
I love you!
@wes962710 ай бұрын
Stirling's approximation states that ln(n!) is approximately equal to n*ln(n)-n Thus, ln(n!/3^n) is approximately n*ln(n)-n-n*ln3=n[ln(n)-1-ln3], which tends to ∞ as n→∞ Therefore n!/3^n→∞ as n→∞
@timetraveller28189 ай бұрын
a neater answer would be to probably to prove Stirling's approximation and then write just as you would say but this is also beautifully elegant Edit:Just realized that I didn't write to prove.
@brunoporcu320710 ай бұрын
Sorry, I dont understand the equal. If I delete that terms it shouldn't just be major? Thank you so much
@vishalmishra304618 күн бұрын
You're multiplying an ever increasing large number to the numerator but matching it with just multiplying a 3 to the denominator. So, there is no limit to how big the numerator grows while denominator is just 3 more times of the previous denominator. So the result has to grow into positive infinity with no other choice.
@bogusawsroda37479 ай бұрын
1:10 nice man
@juergenilse3259 Жыл бұрын
I would look at the cases wit n>6: n!/3^n=(1*2*3*3*5*6)/3^6*product(i)/product(3) i=7 to n Let C=(1*2*3*4*5*6)/3^6 n!/3^n=C*product(i)/product(3) i=7 to n > C*product(6)/product(3) i=7 to n = C*product(6/3) i=7 to n = C*(6/3)^n = C*2^n So lim(n!/3^n) > lim(C*2^n) = C*li(2^n) = infinity As you can see, lim(n!/3^n) diverges at least as fast as C*lim(2^n) with some constant C>0. In the video, it was shown, that lim(n!/3^n) diverges faster than lim(1/27*n), but in fact, it diverges not only faster than a linear term, it diverges even faster than an exponential term with base larger than 1.
@bradfoster6092 Жыл бұрын
Hell yea!
@WillBillDillPickle8 ай бұрын
Who else is here from O'leary's Infinite Series Sheet?
@mathbrah8 ай бұрын
me lol
@guest26494 ай бұрын
i just thought of it like 3^n = 3*3*3.. while as n! = 1*2*3*4*5.. So as only 2 products are less than the 3^n product, n! would take over 3^n quite fast
@colina64 Жыл бұрын
COOL
@jam9339 Жыл бұрын
♾️
@dpmike32819 Жыл бұрын
What about using the ratio test
@PrimeNewtons Жыл бұрын
Sadly, the topic this student was dealing with was limits. So I couldn't even mention Ratio test.
@ayanahmed5114 Жыл бұрын
is the factorial function differentiable
@davidg5898 Жыл бұрын
It is not. Only continuous functions are differentiable. The factorial function fails that test because it is only defined for integers (non-negative integers, specifically). You can do a bit of mathemagic to come up with something akin to what you're asking by taking the derivative of the gamma function (a continuous version of the factorial function) and evaluating it at integer values.
@chendingbang153611 ай бұрын
stirling approximation!
@dpmike3281911 ай бұрын
What about the ratio test? Easier
@vp_arth9 ай бұрын
That limit is just 2 * (3/3) * (4/3) * (5/3) * infinite serie of more than one members
@anghme28ang11Ай бұрын
6:49 why is the inequality like so, why can it be equal to
@anghme28ang11Ай бұрын
Also doesnt diverge not mean infinity
@swampfolk252610 ай бұрын
Ну вообще этот предел очевиден без просмотра видео. Факториал каждым следующим N домножает на N предыдущий результат, а знаменатель каждое следующее N домножается на 3. очевидно что при бесконечности множитель будет последний как бесконечность деленная на 3, что есть бесконечность. Т.е. предел бесконечный очевидно.
@maciejterakowski90628 ай бұрын
I need 3 sec. to find the result
@FrancisHealy-w9f11 ай бұрын
This is so obvious. How could this take more than ten seconds? Let fsubn(n) = (n/3) * fsubn-1). This clearly diverges as n gets big.
@ivandeneriev7500 Жыл бұрын
X!=840 how to solve (not graphically)
@rubixmc732011 ай бұрын
Use the gamma function. It is an integral, so you’ll need to look it up. Γ(n) = (n-1)! So just solve Γ(n+1) = 840
@Yougottacryforthis11 ай бұрын
No solution
@ubiraceelihimas9 ай бұрын
esta muito rápido sem explicar
@arolimarcellinus85418 ай бұрын
why lots of limit problems need to assume that HS student passed their analysis class?? No one ever take mathematical analysis, but those limits problems force us to use it if we cannot use L'Hospital. Limit problems is the source of why students hate math. Because math teacher doesn't even teach analysis properly, especially in inequalities. Can you imagine how many students in the class that can make the inequality postulate (n!)/3^n >= (1*2*n)/(3*3*3)?? I can bet my 100 bucks it will be less than 10 in regular classes.
@koenigtiger65504 ай бұрын
Ну это очень простая задача. Я её решил за несколько секунд в уме.
@dmihovilovic9 ай бұрын
This looks too complicated.....n! is n(n-1)(n-2)....*1, therefore for a very large n,, n! will look like n^n. Then n!/3^n = n^n/3^n = (n/3)^n that tends to infinity when n tends to infinity.
@alfredopi86999 ай бұрын
SI può ottenere lo stesso risultato più velocemente sostituendo n! con la Formula di Stirling valida per "n grande"
@mathbrah8 ай бұрын
Who else is here from O'leary's Infinite Series Sheet?