When we went over this in my calc 1 class, my professor called this the oreo theorem, and then handed out oreos for the entire class. Seems appropriate!
@blackpenredpen7 жыл бұрын
Matthew Giallourakis oh wow nice!! I like that idea!
@jeremybuchanan47597 жыл бұрын
*Zero Stuf Oreo Theorem
@leif10754 жыл бұрын
Isnt a simpler proof the fact that the denominator gets bigger mich faster than the numerator..that should suffice..
@ims6671 Жыл бұрын
In my country its known as the sandwich theorem, and for the theorem where a sequence is bigger than another sequence that tends to infinity, its called the pizza theorem. Unfourtunately, our professor didnt give us a pizza or a sandwich :(
@shmuelzehavi4940 Жыл бұрын
@@leif1075 Maybe it's simpler but is not formal.
@zaerrr78704 жыл бұрын
i'm preparing for my finals completely with the help of your videos and i really really appreciate the help. you're a genius. thank you for your work!
@kujayasinghe91994 ай бұрын
You are a great teacher with a bubbly personality!
@ozzyfromspace7 жыл бұрын
Dude, just awesome! I felt like a kid again watching your video.... :) Something about the whole 'math for the sake of math' vibe you had going. Please keep up the interesting videos. -Float Circuit.
@blackpenredpen7 жыл бұрын
I will!!! Thank you!!!!!!!!!!!!!!!!!!!
@Botisaurus7 жыл бұрын
I hope you explain the gamma function soon. Remember learning it at university but never really understood it. I strongly believe that you can teach it. Really enjoy your videos :)
@Inspirator_AG112 Жыл бұрын
I would have used a similar approach initially, expanding (n!/nⁿ) as (1 · 2 · 3 · 4 · ... · n) / (n · n · n · n · ... · n), and then observing how (nⁿ) grows faster than (n!), since there are more linear terms in the expansion of (nⁿ) than (n!), when n approaches ∞... The main difference to my approach, however, would be applying one of these following rules for limits of quotients between two functions: · *If Θ(f(x)) < Θ(g(x)), then the limit of f(x)/(g(x) as x approaches ∞ is 0. (This will be the case for (n!/nⁿ).)* · If Θ(f(x)) > Θ(g(x)), then the limit of f(x)/(g(x) as x approaches ∞ of f(x)/(g(x) is ±∞, depending on the signs of each function's limit. · If Θ(f(x)) = Θ(g(x)), then the limit of f(x)/(g(x) as x approaches ∞ of f(x)/(g(x) is the quotient of their 'asymptotic coefficients'. Basically, what this means for the limits of quotients between polynomials as x approaches ∞ is that when applying one of the limit-of-function-quotient rules I listed, *everything minus the leading term of both the numerator and denominator can be omitted, which is incredibly efficient.*
@ExplosiveBrohoof7 жыл бұрын
Consider the following generalization: We have lim n-->inf of (n!*k^n)/n^n, where k is a positive real constant. You looked at the case k=1. In fact, for some values of k, the series diverges while for other values, it converges to 0. For what value of k does the series flip from converging to diverging?
@isws2 жыл бұрын
i think its diverging when k > e( euler's constant) cause of the factorial approximation but i dont have time rn to solve it😁
@PanozGTR2 Жыл бұрын
@@isws Almost! It's actually still divergent when k = e as well. This is because of the sqrt(n) component of Stirling's approximation. If you add in the sqrt(n), and take the limit of (n!*k^n)/(sqrt(n)*n^n) instead then it converges to sqrt(2*pi) instead when k = e, and otherwise behaves the same (aside from the rate of divergence).
@crosisbh14517 жыл бұрын
I have not even taking calculus yet (However I take Calc I next semester), and I find your videos really easy to understand, except for a few calculus concept
@blackpenredpen7 жыл бұрын
I am very glad to hear! best of luck and enjoy your classes in the future!
@blackpenredpen7 жыл бұрын
I am very glad to hear! best of luck and enjoy your classes in the future!
@MrRyanroberson17 жыл бұрын
on the top, you end up with: n^n -(sum of k up to n) *n^(n-1) +(sum of [sum of j] * k) *n^(n-2)... already, sum of sums is roughly sum of quadratic, which is cubic, and this is really difficult to work out because the first term is the only thing of degree n, all after are n+1 good thing for the squeeze theorem
@yajurphullera93967 жыл бұрын
Dude your videos are really awesome and motivating. Thanks man!
@blackpenredpen7 жыл бұрын
Yajur Phullera thank you!!!!!
@yuvalpaz37527 жыл бұрын
you can prove this straight from the definition of small-o: we need to show that for all k>0, n>a, n!=1 it is obvious from the definition of n! and n^n if k
@dagajsb69964 жыл бұрын
Your explanation is very simple and easy to understand for even me, Japanese 🇯🇵😆
@blackpenredpen7 жыл бұрын
喜歡小叮噹的請在這按贊!!!
@sansamman46197 жыл бұрын
blackpenredpen how can I message you privately pls?
@bearlin61367 жыл бұрын
現在都叫"多啦A夢" (透漏出年紀了...)
@sansamman46197 жыл бұрын
i dont have twitter
@blackpenredpen7 жыл бұрын
Bear Lin 我也是啊... 唉...
@AdamDavis4447 жыл бұрын
"The list" is very useful for anyone studying Big O Notation.
@blackpenredpen7 жыл бұрын
yes!
@pocsosocskos917923 күн бұрын
You've established in the 2nd observation that this expression (due to the limit) can be simplified down to 1/n, then wouldn't that be enough, considering the limit as x approaches infinity of 1/x is 0?
@GrandAdmiralMitthrawnuruodo8 ай бұрын
In my highschool mathematics class I learned that I could do it as follows: Both the top as well as the bottom of the fraction go to infinity, but since the bottom grows so much faster the limit must be 0. Would that argumentation be correct?
@rishavchoudhuri88067 жыл бұрын
This is also known as Sandwich Theorem.
@blackpenredpen7 жыл бұрын
that made me hungry..
@adude65683 жыл бұрын
In my language I learned it as the plier criterion (literal translation)
@tanishqkushwaha25053 жыл бұрын
Did this type of questions came in iit
@ЭлементМагии7 жыл бұрын
Your videos are very interesting and useful! And, you know, as you mentioned best friend, the fact and the list I started wondering. Are all your videos/lessons a preparation before some gigantic maths problem to solve witch we will need all this knowledge?
@blackpenredpen7 жыл бұрын
My videos are usually supplements to what I teach or just math for fun. : )
@aubertducharmont Жыл бұрын
Great video. Loved your way of doing this. What i did was express the factorial with the gamma function and then differentiated it. Then some trivial work was needed, but i arrived at the same result.
I am pass all that, but I wonder how my teachers would have reacted if I wrote down "By Best Friend Theorem". I did one solve an integral "By Table" and got a bad grade... I think my table as too good for my teacher's taste. The book was McGraw Hill Schaum's Mathematical Handbook of Formulas and Tables by Murray R. Spiegel - not sure of the edition, it was one of those cyan cover.
@sUpErTrEkKiE1007 жыл бұрын
I had that exact problem on my maths assignement this week :)
@josemanuelalvarezguzman63304 жыл бұрын
I'm a student from Mexico, and I finally found help!
@ulasaltunn5 жыл бұрын
I am really appreciated I couldnt find any explanational video like this on youtube nice job bro
@redsalmon99667 жыл бұрын
Sad that Doraemon is not a thing in the US, hope that Doraemon will get popular in the US
@zazkegirotron7 жыл бұрын
Red Salmon sadly its too old to even have a chace
@redsalmon99667 жыл бұрын
It's old, but classic and wellmade
@zombiesalad27227 жыл бұрын
That show was my childhood
@redsalmon99667 жыл бұрын
Zombie Salad *SAAAAAME!!!!*
@robinsuj7 жыл бұрын
We called it "the sandwich rule"
@seroujghazarian63432 жыл бұрын
Or, you could just prove with the ratio test that the series \sum_{n=1}^{♾}{n!/n^n} converges, and you get that \lim_{n-->♾}{n!/n^n}=0 on a silver platter using the contrapositive of the test for divergence
@dhruvinkakadia10857 жыл бұрын
But you could've got the different answer When you got the relation..: ((n-1)/n)((n-2)/n)((n-3)/n).... ((n-(n-1))/n) You could've written it as (1-(1/n))(1-(2/n))(1-(3/n)).... (1-((n-1)/n)) Then put the limit of n as infinity and we would have got 1×1×1×1...×1=1
@owdq1nrWaZu5pYI6Z7JU7 жыл бұрын
1^inf is not always 1
@Shadow47077 жыл бұрын
lim n->inf of 1-((n-1)/n) = 1- (lim n->inf of (n-1)/n) = 1-1 = 0.
@stephenbeck72222 жыл бұрын
The last factor goes to zero, not 1.
@reazraza7 жыл бұрын
I gave this same problem to my fnd today and 3 hrs later you uploaded it😂
@blackpenredpen7 жыл бұрын
LOL!!! amazing!
@reazraza7 жыл бұрын
RIT123 kzbin.info/www/bejne/bmrHZplujLqZZ7s lol he already made one. Same thing but a little different
@JayTemple11 ай бұрын
I thought I was so clever because I looked up Stirling's Approximation for n! and divided by n^n.
@dogol284 Жыл бұрын
I wrote a full multi-paragraph comment about how I did it and then I started the video and saw he did it the exact same way.
@rodrigosuarezcastano7327 жыл бұрын
That squeeze theorem really fucks me up, great video thought
@SlowSabun6 ай бұрын
i have a doubt , we can take log on both sides nd then convert it to a integral , like an infinite sum as integral , nd maybe we get it the ans as e??
@lapotajunior507211 ай бұрын
love the intro sequezz is a hard word to punctinate
@wkingston12487 жыл бұрын
Time to change your name to black pen red pen blue pen.! XD
@jadegrace13127 жыл бұрын
WiSpKing I think it's better without the blue pen because whenever he pulls out the blue pen you know it's a very hard problem
@reazraza7 жыл бұрын
You are really good you should make a video on fibunacci sequence
@blackpenredpen7 жыл бұрын
I already did! kzbin.info/www/bejne/d2bXc6muebJsjJY
@reazraza7 жыл бұрын
Oh thanks
@mihaiciorobitca33437 жыл бұрын
i have a question for you black pen red pen,if any positive number devided by inf or negative inf is equals to 0 that means any constant positive number devided by 0 is actually equals to + or - inf ?
@martinzone81537 жыл бұрын
It does not equal, but approaches 0 from positive or negative side. In the same way, you cannot divide by 0, but you can approach 0 as divisor from its negative or positive side for the result to approach negative or positive infinity respectively. The same is valid for the infinity. The zero is the center of the Universe, there is nothing at that point. When u reach it, you don't need math any more, but if you change your mind and turn around, you'll never stop walking.
@JashanTaggar7 жыл бұрын
Mihai Ciorobitca you would have to test it using close points to come to a hypothesis near that point
@adamkangoroo84757 жыл бұрын
I've watched this already but I didn't remember the list, it's great. N-factOREO!
@Nine-25456 ай бұрын
try solve limit n -> infinity of equations ((n^2)!)/(n^2n)
@austinchen60243 жыл бұрын
For this problem is it possible to separate the limit into a bunch of products, into lim(1/n)*lim(2/n)*...*lim(n/n), where all the limits are taking n to infinity, and then you could reduce all but lim(n/n) to 0, and lim(n/n) is 1, and then you could say that the product is 0?
@nerd_gameratg68253 жыл бұрын
Very thanks from Brazil!!
@bullinmd2 жыл бұрын
"The List" appears to correspond to Big O notation. The most desirable Big O in algorithms correspond to the leftmost items on the list.
@joekerr3638 Жыл бұрын
Yep, rates of growth
@myREALnameISiAM2 жыл бұрын
You use 1 over n because, when you compare the factorial series versus the the exponential series, the final term of the equation is always 1 vs n.
@sergipousmateo28377 жыл бұрын
blackpenredpen when you can, check this limit pls. Because i can't understand why: lim x->infinity (2^(2x))!/((2^(2x)-2^x)!*((2^(2x))^(2^x)) = 1/sqrt(e) Thanks for all of your videos, you are awesome!!!!
@younessbou64894 жыл бұрын
thank you very much from Germany
@thexoxob94482 ай бұрын
I don't think "squeeze theorem" is necessary, since if a number, say a, is sandwiched between the same two numbers, say x , by simple and trivial logic of course a = x
@RICOLINO304 жыл бұрын
Crack 👏👏👏 saludos desde Argentina 🇦🇷🇦🇷🇦🇷
@alexjosephpius58933 жыл бұрын
The answer should be 1/e >>> In the second step take log(n!/n^n)
@ВолодимирСачок-п4ы4 жыл бұрын
Thanks for video, it's very useful, helped me. And interesting fact. In Ukraine we call theorem that you used "theorem about 2 policeman"
@MojeZycieZeMna5 жыл бұрын
you are so cool, thank you for beeing. because of you I don't have to beg my parents to pay my course retake fee
@lukasnitsch86417 жыл бұрын
flawless proof
@blackpenredpen7 жыл бұрын
thank you!!!!
@priyaljain50534 жыл бұрын
In India, we call it the sandwich theorem
@nerd_gameratg68253 жыл бұрын
Brazil too
@zachansen829311 ай бұрын
9:15 the smallest one is C. This is just basic computer science stuff.
@swapnilmane21075 жыл бұрын
Explanation is good, But I liked because of doraemon.
@GlorifiedTruth7 жыл бұрын
Why do you use a Magic Eight Ball as a mic? (I can't be the first to have said this, I know.)
@happy86617 жыл бұрын
b^n should be bigger than n!.. e.g. 2^3 is bigger than 3!
@Stefan-ls3pb7 жыл бұрын
But if n goes to infinity, n! is always bigger than b^n, no matter what is b. 3628800=10!>2^10=1024 if n goes up, n! grows much faster than b^n. proof lim n->infinity (for all terms, i am too lazy to write them down always) b^n/n!=(b*b*b*b*b*...)/(1*2*3*...*(n-2)*(n-1)*n)=b*b/2*b/3*...*b/(n-2)*b/(n-1)*b/n when n goes to infinity b/n goes to 0 (same for b/(n-2) and b/(n-1) ) so we got =b*b/2*b/3*...*0*0*0=0 so n!>b^n
@mallakbasheersyed18594 ай бұрын
At 5:33 he said why he did not take 1/n as 1, can somebody explain,with the same argument 2/n can't be treated as 1 ,explain clearly
@tunistick8044Ай бұрын
because the fact that you actually wrote 2/n means you're n! contains 2 from the first place. What this means is that n!≥2 therefore n≥2 thus 2/n≤1
@JustSimplySilly7 жыл бұрын
Is it possible to calculate the series of the function from n=1 to infinity?
@t_kon7 жыл бұрын
JustSimplySilly power series probably? It does converge though
@verainsardana7 жыл бұрын
Not all, of some series
@OonHan7 жыл бұрын
Easy peasy lemon SQUEEZY
@MsPataso7 жыл бұрын
Love your videos 👍👍👍👍
@blackpenredpen7 жыл бұрын
thank you!!!!!!
@JashanTaggar7 жыл бұрын
I feel like solving this could be done intuitively no? the denominator, n^n obviously grows faster than n! because n! will eventually stop growing? so in an infinite limit scenario, you could say the denominator approaches a larger number than n! by far because it will always keep growing. I understand that showing your work and actually evaluating the limit is the best, legit way, but is this wrong? lmk! :)
@t_kon7 жыл бұрын
Taggadude But it's not always true isn't it? Like the sum of harmonic series. By intuitively, one could observe that it gets to 0 as 1/n for n = infinity is very small. However this series is in fact.....divergant.
@franzluggin3987 жыл бұрын
This would work if n! indeed had a bound. However, as n increases, you add another, _larger_ factor at the beginning, not a smaller one at the end, so it will always keep growing. In fact, one can show that n! grows faster than 10^n, i.e. lim(n->oo) 10^n/(n!) = 0. EDIT: The correct way of saying what I said in my first sentence would probably be: (n+1)! = (n+1) * n!
@davidmaths4 жыл бұрын
Your demostration is amazing, I had to solve it using the D'Alembert criteria the which is not as funny as this metod!
@maximmerle Жыл бұрын
Gréât vidéo as always
@nishanthapradeep90033 жыл бұрын
this is so helpful thanks bro
@williamnathanael4126 жыл бұрын
For the list, where does the double exponential fit? I mean, smt like a^b^n
@physicsphysics19565 жыл бұрын
2^2^x>2^x^2=2^(x*x)=(2^x)^x>x^x
@Salsh1915 жыл бұрын
that mister meseeks moment when he finishes the task and disappears 10:40
@johnfraser811611 ай бұрын
Cool. Thanks!
@douglasespindola51854 жыл бұрын
Sometimes, I'm afraid of this guy! Hahaha, just kidding! Greetings from Brazil!
@82rah7 жыл бұрын
Is using Stirling's formula for n! (via the Gamma function for n) a legitimate way to do this limit?
@ianmoseley99104 жыл бұрын
82rah Yes, but he specifically addressed that at the start of the video
@stephenbeck72222 жыл бұрын
Yes but he wanted this to be more of a precalc or early calculus limit. Gamma function and Stirling formula are more advanced.
@chifengchen93695 жыл бұрын
Thank you!
@blackpenredpen5 жыл бұрын
You're welcome!
@Hamidbinsuhail Жыл бұрын
Its also called sandwich theoram
@matulawa2320 Жыл бұрын
daaaaamn what a good video man, I imagined the answer was 0, now I'm glad it was true hahaha
@spencerhowell45282 жыл бұрын
Amazing video 🙏
@Harrykesh630 Жыл бұрын
sir you could have taken log of both sides and then exponentiate the result to find the limit
@Harrykesh630 Жыл бұрын
according me after taking log this would convert into the definition of integration of ln(x)
@Teknorg3 жыл бұрын
Please do a limit n!!/ n^n (Two times factor)!
@jordilleixalopez74217 жыл бұрын
Can you do the limit when x goes to inf of: x!^1/x - (x-1)!^1/(x-1) ?
@joeli84097 жыл бұрын
Looks up squeeze..I literally did LOL
@fadydavis7457 Жыл бұрын
0:06 Doremon intro music?
@shahzadarif91013 жыл бұрын
Sir the steps where you reduced every term to less than equal to 1, 1/n is also less than equal to one but it was kept as 1/n, can someone kindly clarify this question, plz
@stephenbeck72222 жыл бұрын
He explained it at that step. For the squeeze theorem to give you a final value of the limit, you have to make the limit less than or equal to a number while simultaneously greater than or equal to the same number, and thus equal to that number. So he saved one factor on the right side that he knows goes to zero while knowing the rest of the factors will be less than or equal to 1, so he can say the entire right side goes to 0.
@oers95845 жыл бұрын
hello, i love your videos. But is not enough just to use that the limit of products is equal to the products of limits, where lim when n goes to infinity from 1/n is zero ?
@physicsphysics19566 жыл бұрын
do formula for a cubic equation
@DanBurgaud3 жыл бұрын
Sequeeze = Squeeze I thought you are gonna SNEEEZE! HAHAHAHAHA!
@SimrahJahan7 ай бұрын
Doraemonn introooo❤❤
@user-vm6qx2tu3j7 жыл бұрын
doraemon!
@blackpenredpen7 жыл бұрын
yes yes yes!! hehe
@user-vm6qx2tu3j7 жыл бұрын
blackpenredpen I am a math enthusiast like you
@kodx99954 жыл бұрын
thanks so much !
@theknightikins9397 Жыл бұрын
Infinity to infinity is infinity. Infinity factorial is also infinity. Infinity/infinity is 1. Duh (Before anyone says it, it’s a joke)
@dot94985 жыл бұрын
Thanx
@Gamer455072 жыл бұрын
How to do for sequence ???
@freddietalbot91892 жыл бұрын
im in 2nd year uni doing mathematics and this came up as part of a dual limit question. what have i signed up for ??
@ilmaio Жыл бұрын
You forgot tetration etc... there is so much more greater progressions than the exponentials...
@themasterofawsover100dstrength4 жыл бұрын
What is the limit as n goes to inf of ln(n!)/ln(n^n)?
@solstakao7 жыл бұрын
Where is the black pen red pen YAY?
@blackpenredpen7 жыл бұрын
I still have it, dont worry.
@CorineCheers-p7c2 ай бұрын
Sawayn Fall
@purim_sakamoto3 жыл бұрын
おおー 大どんでん返しがあるのかと思いきや、当然の結論になった(笑)
@dyer3087 жыл бұрын
Was that the theme song from doraemon XD
@blackpenredpen7 жыл бұрын
yes!!!!!!!!!!!!!!
@estebanzd94347 жыл бұрын
Do the limit as n goes to infinity of n factoreo to the n