Logarithmes et exponentielle. A la découverte du nombre e d'Euler.

  Рет қаралды 52,286

De Maths en Pi

De Maths en Pi

Күн бұрын

Пікірлер: 91
@ethanfouillet2548
@ethanfouillet2548 Жыл бұрын
Cette vidéo est parfaite pour m'aider à préparer mon grand oral, merci beaucoup
@fe5617
@fe5617 Жыл бұрын
Quelle est ta problématique ?
@ethanfouillet2548
@ethanfouillet2548 Жыл бұрын
@@fe5617 Comment les logarithmes ont été créer et quelles ont été leurs utilités par la suite ?
@Winclub_tv
@Winclub_tv 8 ай бұрын
​@@ethanfouillet2548 je compte faire quelque chose du style, est ce que tu l'aurais encore ? Ça m'aiderait pas mal, je ne veux pas te voler ton travail mais j'ai du mal à trouver assez de chose pour tenir 10 minutes (ça a changé)
@guil7290
@guil7290 7 ай бұрын
​@@ethanfouillet2548 Moi aussi, est -ce que tu as encore ton texte?
@jbapt3700
@jbapt3700 7 ай бұрын
@@guil7290 il t'a répondu parce que moi aussi je suis intéréssés pour l'avoir stp
@anatole_reve4310
@anatole_reve4310 7 ай бұрын
Honnêtement. Je suis bluffé de la qualité de la vidéo sur le sujet. Merci infiniement.
@demathsenpi7512
@demathsenpi7512 7 ай бұрын
Merci beaucoup pour votre commentaire ! Ravi que cela vous ait plu 🙂
@gilberttouma8460
@gilberttouma8460 Ай бұрын
Merci pour votre clarté
@philippebertrand8616
@philippebertrand8616 2 жыл бұрын
Il y a tant de vidéos tentant d’expliquer les origines concrètes des logarithmes, ln, et e ; et peu sont claires. Celle-ci est excellement faite ! Bravo à toi, sincèrement 🙏
@abdousimo1711
@abdousimo1711 4 ай бұрын
Merci beaucoup pour tes efforts , vidéo très intéressante. Mes sincères salutations du Maroc
@gaelbertinetti5358
@gaelbertinetti5358 Жыл бұрын
Super...j'ai adoré la démonstration du nombre e...en finance...
@demathsenpi7512
@demathsenpi7512 Жыл бұрын
😃
@romaindubut3872
@romaindubut3872 Жыл бұрын
Super vidéo, claire et détaillée comme il le faut !
@batiste5028
@batiste5028 8 ай бұрын
Vidéo super intéressante et instructive. Merci beaucoup et bravo pour la vidéo ! 😃
@philipperoux8926
@philipperoux8926 2 жыл бұрын
Bon travail ! Intéressant. Ça nous change de Cyril Hannouna ...
@nathanbobot7356
@nathanbobot7356 Жыл бұрын
T'es hors-sujet, Cyril Hannouna n'est opas agrégé en math...
@philipperoux8926
@philipperoux8926 Жыл бұрын
@@nathanbobot7356 il faudrait déjà qu il réussisse son brevet des collèges !
@nathanbobot7356
@nathanbobot7356 Жыл бұрын
@@philipperoux8926 Très vrai !
@radouanedarouy7442
@radouanedarouy7442 Жыл бұрын
Bravo, vous êtes génial
Жыл бұрын
Vraiment une excellente vidéo, merciiiii
@demathsenpi7512
@demathsenpi7512 Жыл бұрын
Merci à vous 😊
@loicboisnier5332
@loicboisnier5332 2 жыл бұрын
Ça fait des mois que je cherche une vidéo comme celle-ci, claire et précise sur e. Merci ! Excellente vidéo (petit conseil en passant, tu manques un peu de rythme dans l'élocution, peut-être un point à travailler pour la suite). Mais encore bravo et merci
@demathsenpi7512
@demathsenpi7512 Жыл бұрын
Merci à toi 😊
@mariofun14
@mariofun14 Жыл бұрын
Excellente video! Bravo!
@jeanpaulniclosard8032
@jeanpaulniclosard8032 Жыл бұрын
Excellente vidéo sur des détails lointains voir pas vus du tout. A propos sur le chapitre Log Népérien, la photo c'est St Vincent de Paul , Prêtre, et je ne pense pas que les Log étaient sa préoccupation majeure ;). Wikipedia décrit bien Grégoire de Saint Vincent, Jésuite, prêtre, et contemporain du précédent. Merci encore.
@demathsenpi7512
@demathsenpi7512 Жыл бұрын
Je vous remercie pour votre retour positif. Je serai plus vigilant à l'avenir sur le choix de mes illustrations, très bien vu !
@nicolaslhomme2117
@nicolaslhomme2117 2 жыл бұрын
Brilliante présentation, merci
@doriandumas7596
@doriandumas7596 Жыл бұрын
vidéo très intéressante et bien expliquée, merci
@ra9715
@ra9715 2 жыл бұрын
Merci pour cette vidéo
@stephenandre9750
@stephenandre9750 2 жыл бұрын
Excellente !!! Excellente !!! Excellente !!! méthode pédagogique. J’étais à la recherche de vidéo expliquant le nombre (e) pour essayer de comprendre d’où il venait exactement et aussi de comprendre l’écriture des nombres complexes sous leur forme exponentielle et plus particulièrement la plus belle formule de mathématiques e ^ i thêta = 1 (peut-être feriez-vous prochainement une vidéo sur ce sujet ?). En tombant sur votre vidéo j’ai été émerveillé par son contenu. Faire du simple avec du compliqué n'est pas à la portée de tous. De plus vous avez articulé la nombre e avec plusieurs branches des mathématiques. Et pour finir vous replacez tout cela dans l'histoire. La quasi-totalité des professeurs devrait prendre exemple sur vous sans oublier le Ministre de l'éducation quand il construit le programme. Je viens de découvrir cette vidéo, bien évidement je m'abonne à votre chaîne et je like votre vidéo. Cette vidéo est tellement passionnante que j'ai voulu savoir ce que les personnes l'ayant visionnée avaient laissé comme commentaire. Il est vrai qu'il aurait été intéressant d'indiquer à la fin de vidéo d'expliquer ce que vous expliquez à Mick Erson que vous avez choisi un certain axe. Car n'ayant pas de connaissances suffisantes en taux d'intérêt, j'ai pensé que cela pouvait s'appliquer à n'importe quel taux. Peut-être que prochainement vous pourriez faire un second volet de cette vidéo. En tant que passionné de mathématiques, j'en serait très heureux. Ceci étant dit je trouve la réaction de Mick Erson très agressive et discourtoise. De plus il ne propose sur sa chaîne aucune vidéo, on ne peut donc pas juger sa façon d'enseigner. Savoir est une chose enseigner est autre chose !!!
@demathsenpi7512
@demathsenpi7512 Жыл бұрын
Merci beaucoup pour votre message !
@zazavitch1
@zazavitch1 2 жыл бұрын
Super!! Continuez de la même manière avec d'autre notion mathématique
@MrKriboux
@MrKriboux 2 жыл бұрын
Sympathique vidéo, merci :)
@demathsenpi7512
@demathsenpi7512 Жыл бұрын
Avec plaisir 🙂
@JudgeFredd
@JudgeFredd 2 жыл бұрын
Excellent !
@ThierryLalinne
@ThierryLalinne 2 жыл бұрын
Bravo ! C'était très clair
@dominiclarkin5911
@dominiclarkin5911 Жыл бұрын
Merci pour cette excellente vulgarisation. Un détail, l'image en 13:33 ne représente pas Grégoire de Saint-Vincent, mais Saint Vincent de Paul, son contemporain et lui aussi prêtre catholique.
@demathsenpi7512
@demathsenpi7512 Жыл бұрын
Oui vous avez raison, merci pour la précision, je serai plus vigilant à l'avenir sur le choix des images. Content que la vidéo vous ait plu
@sahmounesaid6430
@sahmounesaid6430 3 ай бұрын
merci pour cette superbe vidéo, je ne comprends pas comment Grégoire de Saint Vincent a calculé l'aire sous l'hyperbole par exemple entre 1 et 2, comment il a trouvé 0.69?
@redryder1064
@redryder1064 Жыл бұрын
Merci beaucoup ! Ma plus grande source de renseignements pour mon grand oral b
@marveldcfanboy3196
@marveldcfanboy3196 Жыл бұрын
C’est quoi ton sujet par hasard ?
@imenedjazair6765
@imenedjazair6765 Жыл бұрын
ouais c’est quoi ton sujet stp?
@marveldcfanboy3196
@marveldcfanboy3196 Жыл бұрын
@@imenedjazair6765 j’ai passé mon grand oral y a 2 jours déjà. Mon sujet était : “En quoi l’invention des logarithmes ont-ils avancer les mathématiques et quelles en sont leur applications ?”
@HubertCailleux
@HubertCailleux 6 ай бұрын
je n'ai pas compris pourquoi essayons nous de trouver la base de ln ?
@ashelseri161
@ashelseri161 Жыл бұрын
Bonjour merci pour la vidéo. Svp dites moi comment vous faites pour hachurer l'air sur geogebra
@demathsenpi7512
@demathsenpi7512 Жыл бұрын
Bonjour, vous demandez à calculer l'aire puis quand elle apparaît dans votre liste d'éléments à gauche, vous allez dans "propriétés" pour en modifier la couleur ou le style.
@holoman2.077
@holoman2.077 11 ай бұрын
20:10 "Le logarithme c'est un bon gars" 🥲
@demathsenpi7512
@demathsenpi7512 11 ай бұрын
N'est-ce pas 🙂
@julienleternele8183
@julienleternele8183 6 ай бұрын
11:35 un puissance deux egale a un je suppose
@demathsenpi7512
@demathsenpi7512 6 ай бұрын
Oui tout à fait 😅
@pierrenantes6157
@pierrenantes6157 2 жыл бұрын
Je suis très intéressé par cette vidéo, mais je bloque sur l'introduction de la Base "naturelle"... Il apparaît la notion de "trou" en expliquant que log10(3) n'est pas rationnelle, mais ne l'ai pas davantage ln(3), si ? J'aurais besoin d'avoir une explication plus approfondie de la notion comme dit la vidéo, du "but recherché".
@demathsenpi7512
@demathsenpi7512 2 жыл бұрын
L’idée est d’obtenir une table logarithmique avec les trous les moins larges entre deux puissances successives de ta base. Si tu prends la base 10 c’est pas optimal car entre 10 et 100 ça te fait déjà un écart important, donc potentiellement désagréable d’exprimer un nombre entre 10 et 100 comme 10^… Naturellement on se dit que prendre pour base un nombre strictement plus grand que 1 mais très proche de lui fera qu’on aura une meilleure représentativité des nombres obtenus dans la table logarithmique. Prenons 1,001 : 1,001^0 = 1 1,001^1 = 1,001 1,001^2 = 1,002001 Etc Donc tu vois que les trous sont effectivement moins larges et les nombres obtenus sont plus denses. Mais le problème c’est que si tu veux écrire 2 comme puissance de cette base il faut prendre un exposant environ égal à 1000. Donc il y a une disproportion entre le nombre obtenu et l’exposant. On veut que les grandeurs habituelles soient accessibles avec des exposants tout aussi habituels. Donc choisissons 1,001^1000 comme base. On n’aura plus le problème des exposants trop grands et on garde la densité, en effet : (1,001^1000)^0 = 1,001^0 = 1 (1,001^1000)^0,001 = 1,001^1= 1,001 (1,001^1000)^0,002 = 1,001^2 = 1,002001 Etc Ensuite tu affines ce procédé et tu en arrives à calculer une limite qui te donne e. Donc ce n’est pas un problème si ln(3) n’est pas rationnel non plus, c’est inévitable que des nombres ne puissent s’écrire comme base^rationnel. Mais avec la base e ça arrive moins souvent qu’avec n’importe quelle autre base. D’où le surnom de base naturelle.
@pierrenantes6157
@pierrenantes6157 2 жыл бұрын
Merci beaucoup pour ces explications complémentaires. Je cherche à bien comprendre l'intuition de nos brillants mathématiciens. À ces réflexions, la progression en 1/n est donc la seule possibilité à envisager pour établir la base naturelle des logarithmes ? On ne pourrait pas imaginer une autre progression comme racine nième de (1/n) ou autre de ce genre certainement plus pertinent ? Seul la progression (1/n) est à envisager ?
@demathsenpi7512
@demathsenpi7512 2 жыл бұрын
@@pierrenantes6157 C'est une question pertinente que tu poses. L'idée est de prendre un nombre proche de 1 en lui étant supérieur strictement. L'idée derrière la prise de 1 + 1/n c'est qu'ensuite, quand j'élève cette base à la puissance n pour éviter la disproportion entre nombres et exposants, je vais pouvoir conserver la densité de nombres dans ma table en considérant les ((1+1/n)^n)^k/n (k entier) et ici l'exposant k/n est donc par construction une fraction, donc un exposant plutôt sympa pour faire des calculs. Si j'avais pas pris une progression en 1/n j'aurais eu potentiellement à gérer des exposants irrationnels et ça on ne sait pas toujours les calculer de manière exacte (seulement des approximations aussi fidèles qu'on veut, notamment à l'époque de Napier) donc c'est un argument pour rendre naturel ce choix de "1+1/n". En fait il faut bien se dire qu'on veut avoir la plus grande densité possible de nombres s'exprimant comme base^rationnel (et pas forcément seulement base^entier). Cette manière de redécouvrir le nombre e n'est pas celle pensée par John Napier (il n'avait pas entrepris de calcul de limite), d'ailleurs il n'a jamais véritablement parlé de nombre e, mais il avait un raisonnement assez proche de celui-ci et utilisait une base qui est une relativement bonne approximation du nombre e.
@ehermite
@ehermite 3 ай бұрын
Saint Vincent de Paul serait surpris de se retrouver dans cette vidéo!! A moins qu'il n'ait déjà eu l'habitude de son vivant qu'on le confonde avec Grégoire de Saint Vincent.
@xavierflaminus7277
@xavierflaminus7277 2 жыл бұрын
C'est quoi la différence entre log et ln
@demathsenpi7512
@demathsenpi7512 2 жыл бұрын
La notation "ln" désigne exclusivement le logarithme dit népérien, c'est-à-dire le logarithme de base e (e étant le nombre d'Euler). Attention c'est une appellation française pour le coup, ailleurs le logarithme népérien s'appelle "logarithme hyperbolique" ou "logarithme naturel" mais se note aussi "ln". La notation "log" ne fait pas référence à une base en particulier, en fonction du contexte on peut la connaître (en physique "log" c'est le logarithme en base 10), en informatique "log" c'est le logarithme en base 2, etc. Normalement on précise la base en dessous mais ce n'est pas toujours le cas, par commodité.
@didierbienassis8646
@didierbienassis8646 2 жыл бұрын
@@demathsenpi7512 encore moi 🙈...juste pour confirmer ce que tu dis....en théorie des nombres par exemple, les mathématiciens écrivent le logarithme népérien " log" et non pas ln...faut le savoir,sinon ça peut prêter à confusion lorsqu'on lit leurs publications... voilà... voilà...😇
@demathsenpi7512
@demathsenpi7512 2 жыл бұрын
Oui. Quand tu vois ln tu es sûr que c’est le logarithme neperien. Après quand c’est log ça peut être plusieurs bases en fonction du contexte, dont aussi la base e effectivement, je ne l’avais pas redis donc bien vu aussi.
@demathsenpi7512
@demathsenpi7512 2 жыл бұрын
De toute façon en mathématiques on utilise quasiment exclusivement le logarithme neperien
@lavoiedereussite922
@lavoiedereussite922 Жыл бұрын
meilleur
@aliseghir2429
@aliseghir2429 2 жыл бұрын
Pour la base naturelle : je pensais qu elle devait être proche de 1 pour avoir le moins de trou.. au final on tombe sur e ? La je suis perdu. Help
@demathsenpi7512
@demathsenpi7512 Жыл бұрын
Avec 1,001 pour base on a une densité incroyable de nombres, mais en contrepartie les puissances entières de 1,001 augmentent très lentement et c'est peu pratique si on veut exprimer des nombres très naturels au quotidien comme 2 (il faut prendre un exposant environ égal à 1000 déjà) donc c'est peu harmonique. On décide alors de prendre la base 1,001^1000, là les exposants s'harmonisent bien mieux avec les nombres dont ils indiquent la puissance. Et les résultats sont tout aussi denses, il suffit de diviser par 1000 l'exposant avec la base 1,001^1000 et on obtient le même nombre qu'en prenant la base 1,001. La différence conceptuelle c'est qu'on ne vas plus de 1 en 1 mais de 0,001 en 0,001 pour les exposants. Mais ça ne change pas la densité des trous A la limite on trouve que c'est le nombre e qui correspond au mieux au but recherché.
@aliseghir2429
@aliseghir2429 Жыл бұрын
@@demathsenpi7512 merci de votre réponse. Je vais prendre le temps de la lire et de la comprendre. Merci
@Gaelaxie
@Gaelaxie 3 ай бұрын
Salut, a partir de 14:55 c'est pas terrible je trouve...
@Gaelaxie
@Gaelaxie 3 ай бұрын
comment une aire rend compte d'une distance ? a quel moment on constate que ca s'annule en 1 ? c'est quoi ce 1 ?
@demathsenpi7512
@demathsenpi7512 3 ай бұрын
@@Gaelaxie Prenons l'exemple d'une voiture qui circule à la vitesse constante de 100 km/h pendant 3h. Pour trouver la distance parcourue par cette voiture, tu fais d = v * t soit 300 kms parcourus. On peut aussi visualiser ce calcul de la manière suivante : - Dans un repère (orthonormé), on trace la courbe de la vitesse en fonction du temps : on obtient un droite parallèle à l'axe des abscisses car on a une fonction constante. - Le calcul d = v * t représente exactement le calcul de l'aire du rectangle obtenu graphiquement, dont les côtés sont délimités par l'axe des abscisses, la droite (horizontale) d'équation y=v et les droites (verticales) d'équation x = T(ini) et x = T(final). Maintenant, si la vitesse n'est plus constante, tu peux toujours représenter la vitesse en fonction du temps, tu obtiens une courbe (plus forcément une droite) et l'aire sous la courbe (plus précisément du domaine délimité par la courbe et l'axe des abscisses entre les instants T(ini) et T(final)) représente toujours la distance parcourue par le véhicule. Pour la seconde partie de ta question : A partir de la fonction inverse, continue sur ]0; +infini[, on peut définir sur ]0;+infini[ une infinité de primitives de cette fonction. On fait le choix de regarder celle qui s'annule en 1. C'est pas totalement arbitraire, on peut observer que ces primitives transforment les multiplications en additions, donc il est pertinent de s'intéresser à leur évaluation en 1, qui est l'élément neutre pour la multiplication. Et comme il y a autant de primitives que de valeurs possibles pour l'image de 1, on s'intéresse, par commodité, à celle qui vaut 0 en 1. C'est plus naturel par exemple que de regarder celle qui vaut -37,5 en 1. C'est un peu la même idée quand on s'intéresse aux fonctions dérivables égales à leur dérivée. C'est le point de départ d'une définition possible de l'exponentielle. Sauf que ça ne suffit pas, la fonction constante égale à 0 vérifie cette définition ... Donc pour définir complètement ce que sera la fonction exponentielle, on lui impose, en plus d'être égale à sa fonction dérivée, de ne pas être constante égale à 0. Par exemple en fixant exp(0) = 1.
@raphaelurbain7705
@raphaelurbain7705 7 ай бұрын
Grégoire de Saint-Vincent et Saint Vincent de Paul sont deux personnes différentes.
@demathsenpi7512
@demathsenpi7512 6 ай бұрын
Vous avez raison, je serais plus vigilant dans le choix de mes illustrations à l'avenir, mea culpa 😅
@youslb359
@youslb359 7 ай бұрын
bonhomme
@Pictoo-ID
@Pictoo-ID 2 жыл бұрын
11:34 alors 1² ça fait pas 2 mais 1³ ça fait bien 1 oui😂
@demathsenpi7512
@demathsenpi7512 2 жыл бұрын
Oui bien vu. Je m’en étais aperçu après le montage malheureusement.
@jean-francoisbrunet2031
@jean-francoisbrunet2031 2 жыл бұрын
Tout est enfantin à comprendre, et puis vers 13 minutes je ne comprends soudainement plus rien. Déjà je ne vois pas pourquoi manipuler des puissances en 0,001 c'est plus simple que des puissances en 1000, il y a autant de chiffres à écrire et à concevoir. Et puis il me semble, sans que je puisse l'expliquer, qu'il y a un énorme saut conceptuel au milieu de l'explication de cette diapo, par rapport à ce qui précède.
@demathsenpi7512
@demathsenpi7512 Жыл бұрын
Avec 1,001 pour base on a une densité incroyable de nombres, mais en contrepartie les puissances entières de 1,001 augmentent très lentement et c'est peu pratique si on veut exprimer des nombres très naturels au quotidien comme 2 (il faut prendre un exposant environ égal à 1000 déjà) donc c'est peu harmonique. On décide alors de prendre la base 1,001^1000, là les exposants s'harmonisent bien mieux avec les nombres dont ils indiquent la puissance. Et les résultats sont tout aussi denses, il suffit de diviser par 1000 l'exposant avec la base 1,001^1000 et on obtient le même nombre qu'en prenant la base 1,001. La différence conceptuelle c'est qu'on ne vas plus de 1 en 1 mais de 0,001 en 0,001 pour les exposants. Mais ça ne change pas la densité des trous. Ce n'est pas une question de simplicité pour les exposants mais d'harmonie, entre l'exposant et le nombre dont il indique la puissance. C'est pas pratique de se dire que 2 est environ égale à base^1000 ... A l'inverse dire que 1,002001 c'est base^0,002 c'est plus adapté. A la limite on trouve que c'est le nombre e qui correspond au mieux au but recherché.
@didierbienassis8646
@didierbienassis8646 2 жыл бұрын
Oui...mais....2 puissance 3 .. .c'est 2 multiplié par lui même 2 fois...et non pas 3.... on a bien ...2 X 2 X 2.... mais seulement 2 signes multipliés... il en va de même pour toute puissance d'un nombre... 7^2...c'est 7 multiplié une fois par lui même...7 X 7.. Le logarithme d'un nombre x en base A est égale à la puissance à laquelle il faut élever cette base A pour obtenir X... On a donc... (log de X exprimé en base A) = Y , C'est à dire que X = A puissance Y
@demathsenpi7512
@demathsenpi7512 2 жыл бұрын
Merci pour ta remarque très juste. Effectivement 2 puissance 3 c’est le nombre 2 multiplié par lui-même deux fois. Il y a bien deux multiplications et trois fois le facteur 2. Pour ta deuxième remarque, il me semble justement que je le dis et l’écris dans la vidéo.
@xopowo1979
@xopowo1979 3 ай бұрын
J’étais perdu vers (la base naturelle) et j’ai arrêté! 😢
@bx7257
@bx7257 2 жыл бұрын
il a grave gechan cyprien
@mickerson3979
@mickerson3979 2 жыл бұрын
C'est un peu un mensonge par omission quand vous dites que vous allez prendre un taux d'intérêt égal à 100 , car si "par hasard" vous aviez pris 10 ou 50 , vous auriez trouvé une toute autre valeur que celle du nombre e. Et cela pourquoi vous ne le dites pas? Votre tour de passe-passe ne fonctionne qu'avec un taux égal à 100. A quoi ce tour sert il ? En effet , je signale aux auditeurs assidus et attentifs que si vous aviez choisi un nombre strictement positif T comme taux d'intérêt , vous auriez trouvé comme résultat : exponentielle de ( T: 100). En écriture simplifiée : exp( T:100). .Et on peut vérifier que si T=100 , alors cette valeur est égale à : exp(100: 100) = exp(1) =e.
@demathsenpi7512
@demathsenpi7512 2 жыл бұрын
Libre à vous d'interpréter la dernière partie de cette vidéo comme un tour de passe-passe, mais tel n'est pas le cas. L'objectif était ici d'illustrer la limite calculée précédemment et qui valait e par un exemple concret et historique. Alors effectivement vous pouvez prendre un autre taux d'intérêt, qui sera moins naturel que 100% vous en conviendrez, et comme vous le dites vous obtiendrez "une" exponentielle également, différente de e certes. Mais ce qui était important ici étant l'apparition d'une exponentielle, qui n'était pas évidente avec les données de départ et a été mise en lumière par Bernoulli indépendamment des travaux cités avant dans la vidéo. Vous pourriez émettre le même type d'argumentation alors quand vous voyez la définition de l'exponentielle comme étant la fonction égale à sa dérivée (et qui vaut 1 en 0). On aurait pu faire d'autre choix (égale à la moitié de sa dérivée, etc) en fait vous changez là le point de départ de la théorie mais nullement son comportement, et c'est justement le comportement qui nous importe.
@demathsenpi7512
@demathsenpi7512 2 жыл бұрын
D'ailleurs on aurait ici pu prendre une somme différente de 1 euro ! Si vous prenez une somme A et un taux d'intérêt R vous obtiendrez A*exp(R) à la limite... et là c'est très général ... mais pour autant les ingrédients intéressants et qui sont au fondement de la théorie sont les mêmes !
@mickerson3979
@mickerson3979 2 жыл бұрын
@@demathsenpi7512 En fait vous avez repris les formules que je vous ai envoyées. De plus dans votre formule ,il faut diviser R par 100. Votre tour de passe passe est totalement inutile. Si oui ,dites à moi quoi cela sert il?
@demathsenpi7512
@demathsenpi7512 2 жыл бұрын
@@mickerson3979 R est déjà un nombre compris entre 0 et 1. Cet exemple que j'ai illustré dans la vidéo permet de partir d'une situation concrète et de trouver le nombre e. Il y a d'autres manières, plus convaincantes estimerez-vous d'y arriver comme avec le logarithme népérien et la recherche de l'intégrale de la fonction inverse sur un intervalle donné. Ce dernier moment de la vidéo n'a pas d'autres objectifs que d'illustrer une propriété vérifiée par le nombre e.
@demathsenpi7512
@demathsenpi7512 2 жыл бұрын
Néanmoins, ce n'est pas l'axe choisi dans la vidéo, mais en formalisant la fonction exponentielle (et pas seulement le nombre e) on peut traiter le dernier exemple dans un cadre général comme vous l'avez proposé et on se rend compte que le comportement limite s'exprime par une exponentielle. C'est un élément loin d'être anodin. Bernoulli s'est intéressé à ce problème, sans doute dans le cadre général, et il a observé que pour ces paramètres particuliers on retrouvait ce nombre e qui commençait à devenir populaire et d'ailleurs ce raisonnement permet de retrouver le développement en série entière de l'exponentielle. (site où on peut voir son travail sur le développement en série entière : books.google.fr/books?id=HdBJAAAAMAAJ&pg=PA429&redir_esc=y#v=onepage&q&f=false)
@nordineboufas4362
@nordineboufas4362 Жыл бұрын
vous ne donnez pas la preuve que l'air sous la courbe est bien le logarithme .
@demathsenpi7512
@demathsenpi7512 Жыл бұрын
Non effectivement, je me suis contenté de donner une interprétation géométrique au nombre e dans cette partie. Voici ici : publimath.univ-irem.fr/numerisation/ST/IST91050/IST91050.pdf
@RobinBariou
@RobinBariou 6 ай бұрын
Je suis ému...
@soulaimandct2681
@soulaimandct2681 Жыл бұрын
e
@Rom_2_RL
@Rom_2_RL 2 жыл бұрын
Excellent !
Cryptologie - Protocole RSA -
21:50
De Maths en Pi
Рет қаралды 3 М.
L'histoire magique du nombre "e"
14:00
Hedacademy
Рет қаралды 63 М.
«Жат бауыр» телехикаясы І 30 - бөлім | Соңғы бөлім
52:59
Qazaqstan TV / Қазақстан Ұлттық Арнасы
Рет қаралды 340 М.
Andro, ELMAN, TONI, MONA - Зари (Official Music Video)
2:50
RAAVA MUSIC
Рет қаралды 2 МЛН
Magnifiques logarithmes (Benoit Rittaud)
14:07
VideoDiMath
Рет қаралды 65 М.
Ce Mathématicien A Ridiculisé Tout Le Monde
14:17
ParaMaths
Рет қаралды 401 М.
Le logarithme, l'ancêtre des calculatrices modernes.
11:41
Techniquement ce qu'il faut savoir
Рет қаралды 44 М.
Merveilleux logarithmes - Micmaths
15:13
Mickaël Launay (Micmaths)
Рет қаралды 584 М.
Les logarithmes : introduction
31:27
clipedia
Рет қаралды 243 М.
"Hermite et les mystères de l'exponentielle" par François Charles
1:33:16
Société Mathématique de France - SMF
Рет қаралды 16 М.
La fonction exponentielle
40:53
clipedia
Рет қаралды 133 М.
La plus belle formule des mathématiques (Benoît Rittaud)
13:07
VideoDiMath
Рет қаралды 763 М.