Let b=a^{5/2} so (b+1/b)^2-2=724. Thus, b+1/b=√726 (b+1/b)(b^2+1/b^2)=b^3+1/b^3+(b+1/b)=b^3+1/b^3+√726=724*√726 This yields b^3+1/b^3=a^7√a+1/(a^7√a)=√726*723=7953√6
@潘博宇-k4lКүн бұрын
E=7953(6)^(1/2)
@Shobhamaths2 күн бұрын
E=7953√6👍
@ShriH-d1oКүн бұрын
Let {(a^2)√a+1/(a^2)√a)}=x & y=a^5+1/a^5; => x^2=y+2=724 +2=726;, x=√726=11√6; also {(a^7)√a+1/a^7√a}= (x)(y)-x =724(11√6)-11√6= (724-1)11√6=723(11√6)