interesting to note that x=0 can be seen feom inspection. this corresponds to. a=1, b=4. . and the other solution is a=4 , b=1 . I have seen this in several of these solutions. What is the defining factor?
@RashmiRay-c1y15 күн бұрын
This is tantamount to (x^3+1)^1/3 -5 = [(x-4){x^2+4x+16}]^1/3 = (x^3-64)^1/3. Let (x^3+1)^1/3 = and (x^3-64)^1/3 =b. Then, a-b=5 and a^3-b^3=65. If ab=t, we get 65=5(25+3t) and hence t=ab=-4. So, a=1,4 which yield x=0, 63^1/3.
@Quest366915 күн бұрын
Eqn can written as (x^3+1)^1/3 - (x^3-4^3)^1/3= 5 Solving for real x= 0; (63)^1/3
@Fjfurufjdfjd15 күн бұрын
χ=0 ή χ=(63)^(1/3)
@neerajgupta785615 күн бұрын
0 and cube root 63
@gregevgeni186415 күн бұрын
Obviously x≠4. The given equation is equivalent to ³√[(x³+1)/(x-4)²]- -³√[((x-4)²(x+8)+48(x-4))/(x-4)²]=³√[125/(x-4)²] ³√(x³+1) - ³√((x-4)²(x+8)+48(x-4)) = 5 ³√(x³+1) - ³√(x³-64) =5 (1). Let a = ³√(x³+1) and b = ³√(x³-64) (*). From (*) and (1) => a - b = 5 and a³ - b³ = 65 => a=1 , a=4 . From (*) ³√(x³+1) = 1 => x=0 or ³√(x³+1)=4 => x=³√63.