Again, only one solution is needed since you can appeal to symmetry to get the other
@is77286 ай бұрын
@@garrettvanmeter5831 Agree
@RoK20162 ай бұрын
You and Admin only solved for one condition: a+b+1=0. I call your result is solve1 and 2. Other condition is a-b=0. a^2-a=73, a^2-2×1/2×a+(1/2)^2-rq(73x4+1)/2=0, so a-1/2-rq(73 +1/4)=0, or a-1/2+rq(73 +1/4)=0 sovle 3. a=b=9.058621 Sovle 4. a=b=-8.058621
@MayorKing0132 ай бұрын
@@RoK2016the conditions in the problem statement say that a is distinct of b, so is no necessary to solve in that case.
@ЛидийКлещельский-ь3х6 ай бұрын
Hellooooo 😊). A bad solution to an easy problem. After 2:40 we substitute (1) a=b and (2) a=-b-1 in (0) a^2-b-73=0 . We get : (0,1) b^2-b-73=0 , and (0,2) b^2+b-72=0 . Therefore : (3) b1=[ 1-sqrt(293) ]/2 , b2=[1+sqrt(293) ]/2 (4) {thanks to Vietta } : b3=-9 , b4=8 , we substitute (3) in (1) and (4) in (2) . We get the right answer. With respect , Lidiy
@ashtongreenidge6 ай бұрын
Recall the condition that a is not equal to b.
@fauzilvaleev7904Ай бұрын
I have no idea in maths, but I’m admire your manner of explanation! Thank you, Sir!
@learncommunolizerАй бұрын
Wow, thanks You are welcome!
@fauzilvaleev7904Ай бұрын
@ I’m Russian. Science, progress, development aren’t empty words for me. At my school 50 years ago haven’t been explained properly. I see your love for the science and maths, which explains us how is created and exists our small Earth . Thank you very much.
@tonyennis17875 күн бұрын
I agree, this guy's presentation is top tier. Doesn't waste time with obvious arithmetic and copying down the same line over and over with tiny changes.
@robertliu31763 ай бұрын
Since a + b + 1 = 0 then substitute b = -a - 1 into eqn 1 and get a^2 - b = a^2 + a -72 = 0 => (a-8)(a+9) = 0 => a = 8 or -9 , then b = -a - 1 = -9 or 8. It's symmetric.
@tonyennis17875 күн бұрын
At 4:50 you conjured a+b=-1, which was well done. However, you could have saved a lot of time by just going back to equation 1 and substituting b-=1-a for b. You end up with (a)(a+1)=72 which is easy enough to solve. Much less error prone than 7 more minutes of algebraic gymnastics.
@margotconard76445 ай бұрын
a^2 = 73 + b b^2 = 73 + a the nearest square of an interger that is larger than 73 is 81 by inspection if a equals 9 and b equals -8, the problem is solved.
It took me around 10 sec to find the solution. Glory to Ukraine.
@丁爸爸-w3f5 ай бұрын
@@爷爷-m2p 你认为谁能看懂汉字?
@oahuhawaii21413 ай бұрын
But you're assuming the solutions are integers. They can be other types of real numbers, or even complex. The other 2 solutions are a = b = (1 ± √293)/2 ; they work for the thumbnail, before he added the a ≠ b requirement to his video.
@oahuhawaii21413 ай бұрын
@爷爷-m2p: That's due to the symmetric system of equations. Variables a and b are interchangeable.
@ernestboston77072 ай бұрын
I simply tried numbers near the square root in my head, thinking that one needed to be negative, and tried -9 & 8, and it worked, so it was just about a minute of work.
@tassiedevil2200Ай бұрын
from the symmetry of the equations, if (p,q) is a solution, so is (q,p). Also, for a and b different, once you find that a=-(b+1) then might expect a and be will be integers and it is pretty immediate to see that (8,-9) and (-9,8) are the solutions. I also found it a bit obscure to always just verify using equation (1).
My thoughts after 15seconds of video: I can guess that a=8 and b=-9. Solving x^2-y=z where z is 73, the only x^2 that could be higher than 73 is 81. Thus 81-8=73. Then solving y^2-x=z using X as either +9 or -9, I realized that it can only be a=8 and b=-9 b/c (8^2)-(-9)=64-(-9)=64+9=73. If there were to be a similar yet more complex problem; I bet it would written as (a^2)+a=(b^2)+b=72=xy where a>b and x=(cbrt(a))^(sqrt(-b))=y+(cbrt(a))-(sqrt(-b)) while y=(sqrt(-b)^(cbrt(a)) … or something like that (>w
@johnplong36444 ай бұрын
You MUST well organize and neat when doing this problem
@mzallocc5 ай бұрын
a^2-b=73 ... (1) b^2-a=73 ... (2) (1)-(2) -> a^2-b-b^2+a = 0 a^2-b^+a-b=0 (a-b)(a+b)+a-b = 0 (a-b)(a+b+1) = 0, since a not equal to b, a+b+1=0, a=-b-1 .. (3), Putting a=-b-1 into (1), (b^2+2b+1)-b=73 b^2+b-72=0, solving this -> b=-9, 8, and using (3) a=8, -9 respectively. (a,b)=(8,-9) and (-9,8)
@evgenysapotnitsky82345 ай бұрын
Задача, на самом деле, очень простая. Вычитаем второе уравнение из первого и после преобразований получаем (a-b)(a+b+1)=0. Отсюда следует a=-1-b (a не равно b по условию задачи). Подставляем полученное выражение для "a" во второе уравнение и получаем b^2+b-72=0. Решаем квадратное уравнение и получаем ответ: 1) b=8, a=-9; 2)b=-9, a=8. Тринадцать минут на такую задачу - очевидный перебор))
@evbdevy3525 ай бұрын
Я тоже решил именно так,отнял от(1) (2).Получил такое же кв.урав-е.
@evbdevy3525 ай бұрын
Потратил не более 5 мин.На Олимп.ге тянет
@НадеждаМаксимович-ф3е5 ай бұрын
Это система со звездочкой. Для олимпиады простовато. Для детей, котопые любят шевелить мозгами очень интересное.
@pavulugjimene88693 ай бұрын
Atbilde nepareiza! a = b = 9,0586215 ☺
@oahuhawaii21413 ай бұрын
@pavulugjimene8869: Your value is a little bit off. And there are 3 more solutions. There are 2 irrational solutions with a = b . They're the roots from the quadratic equation for a² - a = 73 . (1 + √293)/2 ≈ 9.05862138431184... (1 - √293)/2) ≈ -8.05862138431184... There are 2 integer solutions with a + b = -1 . They're the roots from the quadratic equation for a² + a = 72 . (a, b) = (8, -9), (-9, 8) { KZbin moderator: There's nothing wrong with these higher-precision numbers. }
@godot-lee5 ай бұрын
a = 8, b = -9 or a = -9, b = 8
@thomasharding18384 ай бұрын
Or you could just say, one equals -9 and the other equals 8.
Write as (a,b) = (8,-9) or (a,b) =(-9,8 ). What the solutions as written say is (8,-9) =(-9,8) which is incorrect. Also only One solution is needed Since by symmetry if (8,-9) is a solution then so is (-9,8).
@賴瓊川3 ай бұрын
The way is same with mine. Your solution is easier!
@LogicRk6 ай бұрын
Superb ❤
@sadraouimohamed45393 ай бұрын
Gooooood
@Frankkusi-se2rf5 ай бұрын
Please there is a problem in the factorization
@duncan-rmi6 ай бұрын
I did it in my head. but what sort of pen is that? do they do them in other colours?
@ganeshdas3174Ай бұрын
a = - 9 and b = 8 are satisfying the given conditions
@Leungwinnie_3 ай бұрын
❤very good lecture May I suggest a method: a+b=-1and ab=-72 Then we can formulate a quadratic equation: x^2+x-72=0. By quadratic formula, the two roots are 8 and -9 respectively😊
@oahuhawaii21413 ай бұрын
Here's a faster and cleaner solution. a² - b = 73 { E1 } b² - a = 73 { E2 } a² - b² + a - b = 0 { E1 - E2 } (a - b)*(a + b + 1) = 0 b = a , b = -a - 1 Substitute b = a in E1: a² - a = 73 a² - a - 73 = 0 a = b = (1 ± √293)/2 Substitute b = -(a + 1) in E1: a² + a + 1 = 73 a² + a - 72 = (a + 9)*(a - 8) = 0 a = (-1 ± 17)/2 = 8, -9 b = -(a + 1) = (-1 ∓ 17)/2 = -9, 8 The solution to the thumbnail: (a, b) = (8, -9), (-9, 8), ((1 ± √293)/2, (1 ± √293)/2) The video adds a requirement that a ≠ b, so: (a, b) = (8, -9), (-9, 8)
@vijay000712 ай бұрын
My first thought was it's either -8 and 9 or 8 and -9, you substitute em and you get your answer
@陈庶-i3hАй бұрын
so easy. a^2-b=b^-a, a^2-b^2= b-a, (a+b)(a-b) = -(a-b) . a-b≠0 . a+b=-1. so b^2+b+1=73 ,b(b+1)=72 ,b=8, a=-9
@Tiberius886 ай бұрын
Long winded. It doesn't take 13 mins to solve this!
@YAWTon6 ай бұрын
You can halve the time by playing the clip at double speed...😊
@oahuhawaii21413 ай бұрын
@YAWTon: Yes, I Press &:Hold on an empty spot on the screen, and the video player goes to double speed. If I double-tap, it skips ahead by 10 secs. I do both a lot. On a PC, I can press a digit to jump to a multiple of 10% of the video: "5" jumps to the midpoint. The right arrow key skips ahead by 5 secs.
В первую секунду я подумал, что a=b, и во вторую секунду меня обломали)
@oahuhawaii21413 ай бұрын
The solution to the thumbnail: (a, b) = (8, -9), (-9, 8), ((1 ± √293)/2, (1 ± √293)/2) The video adds a requirement that a ≠ b, so: (a, b) = (8, -9), (-9, 8)
@Sevochka11Azim5 ай бұрын
Очень интересно. Спасибо
@Sevochka11Azim5 ай бұрын
Хотя есть и более простые методы решения, но эта игра с формулами мне понравилась.
@learncommunolizer5 ай бұрын
Your welcome
@EstebanChacon-e3eАй бұрын
En la presentación del problema no dice que a es diferente de b
@Samk-nv6wp3 ай бұрын
The comments are proof that mathematics is magical!
@als2cents6796 ай бұрын
In your solution validation you only plugged values in one of the simultaneous equation. You really need to plug into both of the original simultaneous equations to validate that the solution is valid.
@oahuhawaii21413 ай бұрын
Yes. But since a and b are interchangeable in the symmetric system of equations, he only needs to do one complete set.
@als2cents6793 ай бұрын
@@oahuhawaii2141 Yes, 1 set but both equations.
@oahuhawaii21413 ай бұрын
@als2cents679: Technically, he did the equivalent because he used both solutions for equation 1. The 1st solution in equation 1 is the 2nd solution in equation 2; likewise, the 1st solution in equation 2 is the 2nd solution in equation 1. That's due to the symmetry of the variables in the equations. It'll be clearer if he checked the 1st solution in both equations, and then say checking solution 2 is like checking solution 1 with the equations swapped.
@als2cents6793 ай бұрын
@@oahuhawaii2141 Ok, got what you are saying. But yes it was a confusing way to explain stuff.
@als2cents6793 ай бұрын
@@oahuhawaii2141 You see, if someone saw this solution and then applied to another problem where there was only one solution or problem was not symmetrical, then they might incorrectly assume it is enough just to check the answer with one of the simultaneous equation. On the other hand if you checked 1 solution fully and then mentioned that there is no need to check the other due to symmetry, then you won't have this problem.
@CharlesChen-el4ot4 ай бұрын
(a-b)*(a+b -1) =0 a =b or a =1 -b a^2 - a = 73 a^2 - a - 73 =0
@oahuhawaii21413 ай бұрын
You have a wrong sign. (a - b)*(a + b + 1) = 0 The solution to the thumbnail: (a, b) = (8, -9), (-9, 8), ((1 ± √293)/2, (1 ± √293)/2) The video adds a requirement that a ≠ b, so: (a, b) = (8, -9), (-9, 8)
@AnanwerapunАй бұрын
Two parabola graph
@2010chansir4 ай бұрын
PURPOSELY PROLONG THE SOLUTION TO MAKE A VIDEO ?
@rajibhossain83113 ай бұрын
Correctly said. Just by look at the equation one and see the solution
@aqlimursadin59485 ай бұрын
It took me 20" to solve while eating my pepperoni pizza.
@oahuhawaii21413 ай бұрын
At 20", that's a big pizza. Pizza Hut's Personal Pan Pizza is 6", so you've eaten 11⅑ times that. If you can handle 70+ hotdogs, I'll see you on TV next July 4th.
@oahuhawaii21413 ай бұрын
a² - b = 73 { E1 } b² - a = 73 { E2 } a² - b² + a - b = 0 { E1 - E2 } (a - b)*(a + b + 1) = 0 b = a , b = -a - 1 Substitute b = a in E1: a² - a - 73 = 0 a = b = (1 ± √293)/2 Substitute b = -(a + 1) in E1: a² + a + 1 = 73 a² + a - 72 = 0 (a + 9)*(a - 8) = 0 a = -9, 8 b = -(a + 1) = 8, -9 The solution to the thumbnail: (a, b) = (-9, 8), (8, -9), ((1 ± √293)/2, (1 ± √293)/2) The video adds a requirement that a ≠ b, so: (a, b) = (-9, 8), (8, -9)
@dellagobaikal82055 ай бұрын
The proposed solution is too much complicated. Below proposed by G is more technical.
@lugracias6 ай бұрын
👍🌼
@TWJRPGGamming5 ай бұрын
a=-9 b=8
@laogui24252 ай бұрын
So long winded! a^2-b^2 = b-a and since b!=a can divide by a-b a+b=-1 a^2-b=a^2+a+1=73 a^2+a-72=0, (a-8)(a+9)=0 a=8 or a=-9, b= etc. 8^2+9=9^2-8=73
@МихайлоЛовга-ф1ц5 ай бұрын
а=-9, b=8
@MuhammadSharjeelAnsari-s8w6 ай бұрын
🎉
@totorowu50345 ай бұрын
應該有個環節錯誤 不然最後不必這樣證明 是嗎
@эльдар-в4п6 ай бұрын
81-8=73 64+9=73
@Zbigniew-b3u6 ай бұрын
:))))))))) Jak można tak rozwlekać proste zadanie ?!!! było wstawić a=-b-1 do drugiego równania i wynik gotowy z prostego równania kwadratowego b=-9 ; 8 a=8 ; -9
@YAWTon6 ай бұрын
The same problem with the same solution was uploaded to YT a short while ago. I think this guy just made a copy of that clip... terribly boring, and bad from a didactic point of view.
easy to guess the solution by saying what number squared is is slightly greater than 73. result -9 and 8
@salvatorechiocca23756 ай бұрын
A
@oahuhawaii21413 ай бұрын
But you're assuming the solutions are always integers. They can be other types of real numbers, or even complex. The other 2 solutions are a = b = (1 ± √293)/2 ; they work for the thumbnail, before he added the a ≠ b requirement to his video.
@lisandro736 ай бұрын
There are two more real, when a and b are irrational
@oahuhawaii21413 ай бұрын
Yes, his thumbnail doesn't have the a ≠ b restriction.
@uouosxlyz99793 ай бұрын
Nasil olimpiyat sorusu bu.Benim gibi birinin kafadan yaklaşık bir dakikada çözdüğü sorunun olimpiyat sorusu olması garip.
@эльдар-в4п5 ай бұрын
а=-9 в=8 !!!
@Андрей-я7и1с6 ай бұрын
Всё конечно красиво, но зачем так сильно раскладывать и расписывать очевидные вещи?
@oahuhawaii21413 ай бұрын
Here's a faster and cleaner solution. a² - b = 73 { E1 } b² - a = 73 { E2 } a² - b² + a - b = 0 { E1 - E2 } (a - b)*(a + b + 1) = 0 b = a , b = -a - 1 Substitute b = a in E1: a² - a = 73 a² - a - 73 = 0 a = b = (1 ± √293)/2 Substitute b = -(a + 1) in E1: a² + a + 1 = 73 a² + a - 72 = (a + 9)*(a - 8) = 0 a = (-1 ± 17)/2 = 8, -9 b = -(a + 1) = (-1 ∓ 17)/2 = -9, 8 The solution to the thumbnail: (a, b) = (8, -9), (-9, 8), ((1 ± √293)/2, (1 ± √293)/2) The video adds a requirement that a ≠ b, so: (a, b) = (8, -9), (-9, 8)
@эльдар-в4п6 ай бұрын
а=9 б=-8 !!!
@oahuhawaii21413 ай бұрын
You have wrong signs. The solution to the thumbnail: (a, b) = (8, -9), (-9, 8), ((1 ± √293)/2, (1 ± √293)/2) The video adds a requirement that a ≠ b, so: (a, b) = (8, -9), (-9, 8)
@evbdevy3525 ай бұрын
I have solved by other way.Plused (1) and (2)
@arshadshaikh59056 ай бұрын
a = b = 9.05863
@oahuhawaii21413 ай бұрын
a = b ≈ 9.0586213843118..., -8.058621384311...
@oahuhawaii21413 ай бұрын
a = b ≈ 9.0586213843118..., -8.058621384311... KZbin moderator: there's nothing wrong with these higher precision numbers.
@soshakobyan31236 ай бұрын
Olympiad problem? I think this is a joke.
@oahuhawaii21413 ай бұрын
Breakdancing as an Olympic sport is a joke, too.
@tuannguyenvan29842 ай бұрын
Học sinh Việt Nam không dài dòng như vậy! Như vậy chỉ có mấy ông suy nghĩ loằng ngoằng mới làm!