Как всё же хорошо знать формулы бинома Ньютона для (x + y)^3 и (x + y)^5, теорему Виета и метод подстановки! Сколько бумаги можно сэкономить!
@odinrossi335310 ай бұрын
Ага, видео - та ещё наркомания)
@poonkodisrikumar10 ай бұрын
😊@@odinrossi3353
@justme2012lena10 ай бұрын
Да, точно!
@ВладимирГолованов-й5я10 ай бұрын
А сколько ещё ошибок можно допустить во всей этой писанине!
@muxlisashomirzaeva996310 ай бұрын
Индус все усложнял
@AliBarisa Жыл бұрын
I always feel like you complicate matters when it is actually unnecessary. Eg. X=4-Y ...(1) and XY=14...(2), just substitute (1) into (2) and solve the resultant quadratic equation. For the other case, XY=2...(3), So, substitute (1) into (3) and solve the quadratic equation. period.
@Ankara_pharao11 ай бұрын
Sure, i was expected the end of video at this point but suddenly he was in the middle of explanation.
@tyronekim350611 ай бұрын
I agree. 😅
@SalmanAhmed-zo4pi11 ай бұрын
Same thought! 😊
@justme2012lena10 ай бұрын
That what I thought as well.
@alessandracampelli609010 ай бұрын
Exactly 🙁
@himanshupaliwal202611 ай бұрын
a very simple solution can be to use binomial therorem (x+y)^5 and then create the expansion in terms of x+y and xy, u will directly get the quadratic equation to calculate xy.
@assat1010 ай бұрын
Agreed
@krwadaАй бұрын
binomial theorem is the fastest way to solve this thing.
@knotwilg35967 ай бұрын
The elementary way to solve this is reducing the higher powers to lower powers by substitution. Since x^5+y^5 = (x+y) (x^4-x^3y+x^2y^2-xy^3+y^4) => x^4-x^3y+x^2y^2-xy^3+y^4 = 116 At the same time (x+y)^4 = x^4+4x^3y+6x^2y^2+4xy^3+y^4 = 256 Subtracting gives 5x^3y+5x^2y^2+5xy^3 = 140 => xy (x²+xy+y²) = 28 We further reduce x²+xy+y² = (x+y)² - xy = 16-xy This gives xy (16-xy) = 28 and this is a quadratic equation in xy with solutions 2 and 14 This gives 2 sets of equations (x+y=4, xy = 2) and (x+y=4, xy=14) which we can transform into quadratic equations by substitution Those give solutions (2+v2, 2-v2) and (2+2i v10, 2-2i v10) where the latter exists in the complex field. Even if you show this step by step, this can be done in 5 minutes. You are math literate but you take unnecessary long roads to the solution.
@jiqin42986 ай бұрын
this is the real method that the question setter want the solvers to find out, not the way in video
@THESURAFELB2 ай бұрын
Thanks🔔
@BP-gn2clАй бұрын
Correct
@sparkgamer6625Ай бұрын
This is no different from what the poster did. Same process of reducing powers.
@damirdukic10 ай бұрын
Another nice way to solve this equation, and I think a quicker one, is to substitute "x" with "2 + u" and "y" with "2 - u". This way, when we expand "(2 + u)^5 + (2 - u)^5 = 464" we get a biquadratic equation, which is easy to solve.
@IvanPetrov-rs1kq9 ай бұрын
The equation is solved in 10 minutes not in 25 in the clip.
@stantackett107Ай бұрын
Yeah, I hate how these equations are made way more complicated than they need to be. Some I can solve in my head in 10 seconds. This one, needs paper@@IvanPetrov-rs1kq
@jxucantabАй бұрын
I did it this way, before actually watching the lengthy video. After binomial expansion and cancelling, it reduces to u^4+8u-20=0. then either u^2=2 or u^2=-10. For real solutions, t^2=2, thus t=+-sqrt(2). The real value for the (x,y) pair is (2+sqrt(2), 2-sqrt(2)). The complex pair would be (2+i*sqrt(10),2-i*sqrt(10)). Much quicker.
@guyhoghton39911 ай бұрын
Once you have their sum and product you can write down the equation for _x_ and _y_ immediately, since _t² - (x + y)t + xy = 0_ is satisfied when _t = x_ and when _t = y_ E.g. _x + y = 4, xy = 2_ _t² - 4t + 2 = 0_ with roots _2+√2, 2-√2_ which means that these are the respective values of _x_ and _y_ in either order.
@ΑντώνιοςΤσακίρης10 ай бұрын
This equation is aka Vieta's formula.
@paulortega53173 ай бұрын
If f(n) = x^n + y^n then f(n+2) = f(1)*f(n+1) - xy*f(n) and f(0)=2 For this problem f(1) = 4, f(5) = 464, and we first need to solve for xy Let xy = b then f(n+2) = 4*f(n+1) - b*f(n) f(0) = 2 f(1) = 4 f(2) = 16 - 2b f(3) = 64 - 12b f(4) = 256 - 64b + 2b^2 f(5) = 1024 - 320b + 20b^2 = 464 20b^2 - 320b + 560 = 0 b^2 - 16b + 28 = 0 (b - 2)(b - 14) = 0 xy = 2 or xy = 14 each with 2 solutions
@заряд-о3д Жыл бұрын
Наиболее краткое решение с верным ответом, при условии применения более простых методов - является верным!.... Здесь такого нет - решение излишне усложнено, из за этого более длинное - значит решение некорректно.... Можно было сразу использовать формулу а^n + b^n , при n = 5 .... Более того решив систему двух уравнений и в последствии квадратное уравнение получилось бы по человечески!
@user-kr1zj6lm2u8 ай бұрын
I have been away from math for 25 years. I was really shocked at how it came flooding back. Old brain but it is not dead yet!
@juliovasquezdiaz24327 ай бұрын
Hay que practicar matemáticas todos los días. Tengo 72 añitos jaja y sigo practicando. Saludos desde Chiclayo Norte del Perú
@brianwilson284810 ай бұрын
I've worked in mathematics for decades, I have no idea what cancel is as an operation. Everybody that uses it seems to confuse it with dividing out, or subtracting out. However: X/X=1, X-X=0. The reason most people have trouble with algebra is they're using the same word for two completely different operations. There is no such operation as "cancel". Things either divide out, or they subtract out. You have to use the correct term if you're going to teach students what they're supposed to do. Many thanks to Mr Burt Fetters, my college algebra teacher, who drilled this into the class, and finally made algebra an understandable system.
@knotwilg35967 ай бұрын
I agree with you that "cancel" can be confusing to beginner mathematicians who don't really know what's going on. So, when teaching elementary algebra, it should be avoided and instead the actual operations must be made explicit. As a shorthand for an elementary operation during a more elaborate exercise for algebra literates, I think it's fine.
@prime4236 ай бұрын
On the mark!!When in doubt, cancel out is NOT MATHEMATICS but gibberish.
@Ярослав_Вдовин11 ай бұрын
You could see that for x+y=4, xy=z, results will be symmetrical for each pair of rezults for both z.
Если уравнение содержит х и у в пятой степени, то это уравнение пятой степени, и тогда всех возможных корней (включая комплексные) должно быть пять. А тут четыре
@domenicocacciatori9 ай бұрын
Esatto. Il ragazzo è bocciato
@CecilPonsaing6 ай бұрын
Beautiful work.
@learncommunolizer6 ай бұрын
Thank you very much!!!
@ТатьянаСтрокова-щ1р3 ай бұрын
Так можно решать до бесконечности, а решить можно гораздо проще.
@wes96277 ай бұрын
Study this much simpler solution method. Substitute x=z+2 and y=-z+2 into the given equation and rearrange to (z+2)^5-(z-2)^5-464=0 Pascal's Triangle: 1 5 10 10 5 1; 2[5*2z^4+10*2^3z^2+2^5]-464=0; 20z^4+160z^2-400=0; z^4+8z^2-20=0 z^2=(-8±12)/2=2 or -10 and z=±√2 or ±i√10 x=z+2=2±√2 or 2±i√10 and y=4-x=2∓√2 or 2∓i√10
@charlesmitchell5841 Жыл бұрын
Nice problem. Nice job in solving it.
@learncommunolizer Жыл бұрын
Thank you very much!!!
@SH33110 ай бұрын
Using Powers And roots to equation have some rules And leads to reducing interval of usable numbers.
@ThuNguyen---9 ай бұрын
Bài toán khá phức tạp phải áp dụng nhiều kiến thức toán học, cùng vài trang giấy mời giải được !
@dogethsamurai239010 ай бұрын
Thank you this a long and delay process that take a lot of step, and a lot memorization require. This video show how to solve this equation with a garanteen answer.
@Miroslav_Bulgaria8 ай бұрын
Good job! Well done! Otherwise I understand that may be in different regions and countries it simply use another approach to Quadratic equations as: ax2 + bx + c = 0 to standard solution…., but was shown it is easy for simple and small numbers but otherwise it will be really difficult to determine the answers….
@medbou313611 ай бұрын
You must use relation betwen th summ and product of the roots for equation of 2nd degrees.
It’s so long I think how to do in exam short period Thanks
@babyghost44349 ай бұрын
nice solution i really love longer solutions it makes me feel great hahah
@zainquadri1206Ай бұрын
I am as dumb as I started... If anything I am dumber...
@sasisugu4 ай бұрын
Explained well sir I have studied maths only upto 10th std. In +2 I've studied pure science This solution which taught by you is very difficult to me. So, so hard sir. How can I pick up it.🙄
@MathForEverybody6 ай бұрын
Nice!
@learncommunolizer6 ай бұрын
Thank you! Cheers!
@kuuso167511 ай бұрын
When we meet x+y=a and xy=b, we better say x,y are the solutions of t^2-at-b=0. Though in the video (x-y)^2=8 is changed into x-y=±2√2, it should be |x-y|=2√2 and will need case treatment. We may omit them with proposed explanation.
@kuuso167511 ай бұрын
t^2-at+b
@ft733911 ай бұрын
Should be: t^2 - at + b = 0
@vasileioszounarelis57943 ай бұрын
Μπράβο!!!
@ЭдуардПлоткин-р3л Жыл бұрын
Зачем же так сложно решать? Этот же ответ я получил через 5 минут.
@sinisakarabatkovic-fq8qg6 ай бұрын
While it is good for brain 🧠 maintenance to think or practice logic, it is crucial to learn how to put problems in mathematical form. If your problem is not correctly described by a mathematical equation then result is wrong. Garbage in garage out is what they teach you in computer classes.
@phoebe5435 ай бұрын
I think you'd get more positive feedback if you offered this as an alternative solution and do quadratic in method 1.
@Ta-tamaan10 ай бұрын
I like how you always say "bracket" but always put a "parenthesis"❤
@pengliang15110 ай бұрын
Why a degree 5 equation only have 4 sets of roots ? Is something missing ?
@Dante-4209 ай бұрын
If you solve x^5+y^5 = 464 for one variable, you get five solutions because it's a fifth degree polynomial equation. But this isn't a polynomial equation - it's a *system* of polynomial *equations*. Finding the number of solutions to a system of polynomial equations is much more difficult, because it's complicated by factors like the independence of equations and the possibility of infinitely many solutions (check out the wikipedia article for "system of polynomial equations"). In this particular case, we're lucky because the fifth degree polynomial x^5+y^5 is divisible by x+y so we just need to solve the fourth degree polynomial that results from the quotient, hence four solutions. (Also, normally we would need to prove the demoninator of our polynomial division is not zero, but here we are given x+y=4)
@mohamedyassine6250 Жыл бұрын
Hello . Please I need the solution to this equation. x,y are reals such that: x²-xy+y²=76 What is the value of x+y=?
@Caturiya10 ай бұрын
I solved it I hoped nicely Allah Akbar 4 you kzbin.info/www/bejne/nYKld6ianbGXe9U
@IEPYandPUYO11 ай бұрын
Nice video! 👍 You should've written x1y1 and x2y2 at 11:51, because the way you wrote xy=14 and xy=2, it looks like you're saying that 14=2. 😁 Same thing for u. Should've been u1 and u2.
I wrote this in another comment, but the reason we have 4 solutions is because this is a "system of polynomial equations" instead of a polynomial equation. In this particular system, we can divide x^5+y^5 by x+y to obtain a 4th degree equation, which is what is being solved. This division is valid because x+y=4≠0
@Darisiabgal75739 ай бұрын
Of the solutions two were imaginary and two were trivial, but since one of the imaginary solutions was also trivial the is in only one non-imaginary non-trivial solution.
@WildRhinocerosDriver9 ай бұрын
А зачем так сложно то? ))) Пришла пора попробовать себя в физике или химии
@АндрейКожевников-о8й11 ай бұрын
Гораздо проще решать методом итераций: подставляем 2, первое выражение попадаем в точку а во втором при прямой подстановке получаем значение равное 64. Артнллеристы скажут, что до цели большой недолет. Подставляем в оба выражения Х=3, в обоих выражениях получаем большой перелет. Во втором выражении Х=648, поэтому взяв эти выражения в вилку(как говорят артеллериств) будем подбирать промедуточное число на отрезке 2 и 3.
@ft733911 ай бұрын
So you will get only the real answers!
@zohrealizadeh68279 ай бұрын
Thank you❤❤
@thomasmunch219011 ай бұрын
Can you help me compute the flux integral of the surface S using the divergence theorem if the vector field F = yj and S is a closed vertical cylinder of height 2, with its base a circle of radius 1, on the xy-plane, centered at the origin ?
@AlexMarkin-w6c10 ай бұрын
The solution is straight forward for school students: y=4-x => x^5+(4-x)^5=464 (x^2-4x+2)(x^2-4x+14)=0. For real solutions , (x^2-4x+2)=0 (x-2)^2-2=0,. Alternatively, Vieta's formula and symmetry.
@assat1010 ай бұрын
Good job mate!
@learncommunolizer10 ай бұрын
Thank you very much!!!
@сергейрождественский-ь9х8 ай бұрын
❤❤❤❤
@fei795410 ай бұрын
I more interested how many pages you used eventually
@KingAntDaProphet11 ай бұрын
Just divide by five and split it in half
@reinymichel6 ай бұрын
What a long ending !!! At the end, once you have xy=14 and x+4 = 4 x(4-x) = 14 x^2 - 4x + 14 = 0 x = (4 ± √-40)/2 , or x = 2 ± √10 i , same thing for the other case , so you your 2 x's , easy to get the y
@ControlledDemolition7 ай бұрын
x = ~.58 y = ~3.42
@MrUtubePete8 ай бұрын
Nice pen
@louismendoza979510 ай бұрын
A good mathematician does not make a good teacher. I suggest using a logic line on the right of your equations so that you can explain their thought processes.
@ВалентинГорелов-ф2э Жыл бұрын
Учителю надо бы поучиться умножать целые числа
@xopenmind3 ай бұрын
too complicated .. xy=P and x+y=S you can solve by x^2 -Sx +P = 0 ...
@estevan206518 күн бұрын
4 da matina, parei de assistir na hora que ela mudou de folha, poucas ideia pra Y menos ainda pra X
@ajeethpandey7 ай бұрын
A symple problem made complicated and much more the time 25 mins !
@anakham7910 ай бұрын
Despite this solution is very detailed, I think it is not entirely correct. Exponentiation of left and right equation parts, as well as multiplication of equation parts, is not equivalent transformation. x=-1 is not equivalent to x^2=(-1)^1, and even x=1 is not equivalent to x^3=1 in the field of complex numbers. If you added equations (3) and (4) to the initial system, it would be equivalent transformation of system as a whole. But in this case you should check every solution of your intermediate equation, whether it feats to both initial equations (1) and (2). And we all will see the practise of exponentiation to the power of 5 complex numbers and numbers with radicals. Or you should use fundamental theorem of algebra about polynomial complex root number, using transition to biquadratic equation, already mentioned in comments. But in this case may be it's worth just to use formula for biquadratic equation?
@flyingfish20119 ай бұрын
完全看蒙了,如果是考试,估计半个小时做不完一道题呀😂
@haothe109910 ай бұрын
X^5 + Y^5 = 464
@fei795410 ай бұрын
How many pages you used 😊eventually
@echodupeterwilliamgriefiel38325 ай бұрын
like your pen, whts the type name?
@user-we5kx2tn6o11 ай бұрын
Это всё равно что лететь из Берлина в Париже через Пекин.
@user-tl8ib7dp4y10 ай бұрын
😂😂
@HoangVu-nt2uo10 ай бұрын
Trực tiếp mũ 5 phương trình x+y=4 cho ra cái x^5 và y^5 luôn
@rogelioroldan95277 ай бұрын
Siempre te complicás Ecotú querido. Sustitución x=4-y, lo sustituyes en la 2a ecuación. Mirá que fácil. No te compliques tanto Ecotú.
@edwardtaschtschyan27079 ай бұрын
Х=1, у=3(х=3 у=1)
@adefumiemax-macarthy9506 ай бұрын
😊😊
@rameshkmishra25178 ай бұрын
Why you are making it that much complicated
@HiepThach-uw1ix7 ай бұрын
Quá phức tạp
@IvanPetrov-rs1kq9 ай бұрын
Haven't you studied about a discriminant of a quadratic equation? 8th or 9th grade in the school. The problem is much easier to solve, not in 25 minutes.
@SH33110 ай бұрын
Ať time 8.36 u²-6u²!=5u² you forget minus
@davereynolds7396 ай бұрын
He's moving everything to the right side of the equation, so 5u^2 is correct.
@alexandredutremblay705010 ай бұрын
Something bothers me. Intuitively, I would have thought that a 5 degrees équation should have 5 couples of solutions in C, no? Just like a 5 degrees equation of x has 5 solutions in C. I would guess that I'm wrong somewhere, but i dont know where, and if i'm not where ois the fifth solution ?
@knotwilg35967 ай бұрын
There's an extra constraint x+y=4. This reduces the solution space with (at least) one degree.
@DonaldKim338 ай бұрын
When I asked Chatgpt It is said that the x ≈ is 2.532 and the y ≈ is about 1.468.
@maxlion321310 ай бұрын
...io vado al cinema..😢
@waimanchin49511 ай бұрын
一般聯立方程要的是實數解!
@cachotrelles4715 Жыл бұрын
Buenas tardes, hermosa explicación. Y, como sostengo, las matemáticas, sus reglas y sus números SON EL IDIOMA...no importa la lengua en que se explique. Gracias
@gLg35910 ай бұрын
x5,y5=?
@AlbaRosa-ui3xs29 күн бұрын
Forse questi video sono rlivolti a chi non ha dimestichezza con la matematica e si sceglie un metodo più lungo,ma più semplice da comprendere...
@BrandonCBlack-zn6qt9 ай бұрын
why not try brute force method : X = 3.4142, : y = 0.585799. Thanks
@markterribile694810 ай бұрын
Interesting problem, interesting solution technique. BUT you belabor and agonize over basic arithmetic, but leap over the error-prone operations such as collection of terms. Your presentation could be so much more helpful if you show the error-prone steps, but move quickly through the truly elementary stuff.
@markterribile694810 ай бұрын
Followup: Each step you show should be as much as can be verified by quick inspection, neither more nor less. Anyone taking this problem on already has elementary algebra. The magic of this solution lies in generating formulas that allow the repeated substitution of known values. That's the magic, and the structure of that magic should be foremost in the presentation.
@UshanaMakeba8 ай бұрын
Can someone explain to me at 13:00 when he just puts in (x+y)^2 + (x-y)^2= 4xy, where do the (x-y)^2 and 4xy come from? It feels like he just adds them in out of nowhere, though he says it’s an algebraic rule.
@catherine73047 ай бұрын
it is (x+y)^2 - (x-y)^2=4xy
@sgenov9 ай бұрын
If I was reviewing your work, I would give you a low grade for not using a simpler solution.
@charliekollarovics508410 ай бұрын
Miért nem használod a másodfokú egyenlet képletét?
@carlosdavila38210 ай бұрын
12:45 es obvio pero como se te ocurrió
@DuyGiap-z5k10 ай бұрын
Những phép phân tích quá đơn giản mà diễn giải quá chi tiết làm mất thời gian và gây khó chịu quá
@bathaoang50615 ай бұрын
X .y tinh bình phương lập phương trình vv. Quy đồng mẫu số và rút gọn phân số vv. OK bạn vvv.
@lucksys10 ай бұрын
IS a big fail cancel (x+y)² with the squere root , because this is the a absolute value definition. So is wrong !!!
@thekennethofoz359410 ай бұрын
I find it really poor practice to use "x" for both a variable and a multiplication symbol in the same equations. So much opportunity for confusion, and it really slows down the scanning of a line.
@afinstal9 күн бұрын
Congratulations. You found the way to hate maths.
@key_board_x3 ай бұрын
(x + y)² = x² + y² + 2xy → given: x + y = 4 16 = x² + y² + 2xy (x + y)³ = (x + y)².(x + y) (x + y)³ = (x² + 2xy + y²).(x + y) (x + y)³ = x³ + x²y + 2x²y + 2xy² + xy² + y³ (x + y)³ = x³ + y³ + 3x²y + 3xy² x³ + y³ = (x + y)³ - 3x²y - 3xy² x³ + y³ = (x + y)³ - 3xy.(x + y) → given: x + y = 4 x³ + y³ = 64 - 12xy (x + y)⁵ = (x + y)².(x + y)².(x + y) (x + y)⁵ = (x² + 2xy + y²).(x² + 2xy + y²).(x + y) (x + y)⁵ = (x⁴ + 2x³y + x²y² + 2x³y + 4x²y² + 2xy³ + x²y² + 2xy³ + y⁴).(x + y) (x + y)⁵ = (x⁴ + 6x²y² + 4x³y + 4xy³ + y⁴).(x + y) (x + y)⁵ = x⁵ + x⁴y + 6x³y² + 6x²y³ + 4x⁴y + 4x³y² + 4x²y³ + 4xy⁴ + xy⁴ + y⁵ (x + y)⁵ = x⁵ + y⁵ + 5x⁴y + 5xy⁴ + 10x³y² + 10x²y³ x⁵ + y⁵ = (x + y)⁵ - 5x⁴y - 5xy⁴ - 10x³y² - 10x²y³ x⁵ + y⁵ = (x + y)⁵ - 5xy.(x³ + y³) - 10x²y².(x + y) → given: x + y = 4 x⁵ + y⁵ = 1024 - 5xy.(x³ + y³) - 40x²y² → recall: x³ + y³ = 64 - 12xy x⁵ + y⁵ = 1024 - 5xy.(64 - 12xy) - 40x²y² x⁵ + y⁵ = 1024 - 320xy + 60x²y² - 40x²y² x⁵ + y⁵ = 1024 - 320xy + 20x²y² → given: x⁵ + y⁵ = 464 464 = 1024 - 320xy + 20x²y² 20x²y² - 320xy + 560 = 0 x²y² - 16xy + 28 = 0 → let: z = xy z² - 16z + 28 = 0 Δ = (- 16)² - (4 * 28) = 256 - 112 = 144 = 12² z = (16 ± 12)/2 First case: z = 14 → recall: z = xy → xy = 14 Second case: z = 2 → recall: z = xy → xy = 2 Resume: x + y = 4 ← this is the sum S xy = 2 or xy = 14 ← this is the product P So x & y are the solution of the following equation: a² - Sa + P = 0 First case: xy = 14 and (x + y) = 4 a² - 4a + 14 = 0 Δ = (- 4)² - (4 * 14) = 16 - 56 = - 40 = 40i² a = (4 ± i√40)/2 a = (4 ± 2i√10)/2 a = 2 ± i√10 → x = 2 + i√10 Recall: y = 4 - x y = 4 - 2 - i√10 → y = 2 - i√10 → x = 2 - i√10 Recall: y = 4 - x y = 4 - 2 + i√10 → y = 2 + i√10 Second case: xy = 2 and (x + y) = 4 a² - 4a + 2 = 0 Δ = (- 4)² - (4 * 2) = 16 - 8 = 8 a = (4 ± √8)/2 a = (4 ± 2√2)/2 a = 2 ± √2 → x = 2 + √2 Recall: y = 4 - x y = 4 - 2 - √2 → y = 2 - √2 → x = 2 - √2 Recall: y = 4 - x y = 4 - 2 + √2 → y = 2 + √2
@waimanchin49511 ай бұрын
坐標內有i,是什麼意思?
@waimanchin49511 ай бұрын
是什麼意思?
@吳泰樑11 ай бұрын
將-1開根號之值,是個虛數,用i代表。
@user-tl8ib7dp4y10 ай бұрын
root -1 = i
@arupsaha5967Ай бұрын
Fo u know math or u are writing mohabharat
@ibrahimbakr87887 күн бұрын
Main key is the find XY ... after that we can solve this problem::))
@NonyaBusiness-q6r8 ай бұрын
It's 46÷23 =2 then 4 divided by 2 thats 2 that's 2, 2s so it's 2to the power or 2 2square idk how to articulate how you say it properly in mathematics
@ashkannikzad143211 ай бұрын
140- its correct not140+
@Nepomenik10 ай бұрын
:)
@秦劍鋒11 ай бұрын
算完天都亮了,下一位
@ivantdibere802011 ай бұрын
Подставлял кто-то эти решения в уравнение?У меня не выходит(выходит на первое).
@ЮрийКочетов-р5п10 ай бұрын
Да, подставлял. Обращаются в верные равенства. Все четыре пары являются корнями системы
@ЮрийКочетов-р5п10 ай бұрын
Кстати, у Вас ценное замечание на счёт проверки корней уравнений. 👍 При возведении частей уравнения в степень, при замене переменной (что в данном решении встречалось) могут появиться "посторонние корни", которые не являются корнями исходного уравнения. Так что проверка обязательна и без неё решение не является полным:-)