China Math Olympiad Problem | A Very Nice Geometry Challenge | 2 Methods

  Рет қаралды 8,463

Math Booster

Math Booster

Күн бұрын

Пікірлер: 16
@holyshit922
@holyshit922 8 ай бұрын
My approach Measures of angles in triangle ADB Angle DBA = 3theta Angle DAB = 90-2theta Angle ADB = 90 - theta From sine rule in ADB (x-y)/sin(3theta) = y/sin(90-theta) (x-y)/y = sin(3theta)/cos(theta) Express sin(3theta)/cos(theta) in terms of tan(theta) From triangle ABC we know that tan(2theta) = y/x x/y - 1 = sin(3theta)/cos(theta) x/y - 1 = 1/tan(2theta) - 1 After comparing these two results we will get quartic equation easy to solve but only tan(theta) = 2 - sqrt(3) will be valid solution so theta = 15
@TheAlavini
@TheAlavini 3 ай бұрын
Both solutions are nice. The second one is amazing. Congrats
@MathBooster
@MathBooster 3 ай бұрын
Thank you 🙂
@The-IndianOven
@The-IndianOven 8 ай бұрын
Very nice solution ❤
@MarieAnne.
@MarieAnne. 7 ай бұрын
In △ABC, ∠C = 2θ, ∠B = 90 → ∠A = 90−2θ In △ABC, tan(2θ) = y/x → *x/y* = cot(2θ) = *cos(2θ)/sin(2θ)* In △ABD, ∠A = 90−2θ, ∠B = 3θ → ∠D = 90−θ Using law of sines in △ABD we get: AD/sin(∠B) = AB/sin(∠D) AD/AB = sin(∠B)/sin(∠D) (x−y)/y = sin(3θ)/sin(90−θ) x/y − 1 = sin(3θ)/cosθ cos(2θ)/sin(2θ) − 1 = sin(3θ)/cosθ cos(2θ) − sin(2θ) = sin(3θ) sin(2θ)/cosθ = sin(3θ) * 2 sinθ cosθ / cosθ cos(2θ) − sin(2θ) = 2 sin(3θ) cosθ Using product-to-sum identity, we get: cos(2θ) − sin(2θ) = cos(2θ) − cos(4θ) sin(2θ) = cos(4θ) sin(2θ) = 1 − 2 sin²(2θ) 2 sin²(2θ) + sin(2θ) − 1 = 0 (sin(2θ) + 1) (sin(2θ) − 1) = 0 2θ = −1 or 1/2 Since 2θ is an acute angle (it is a non-right angle of right triangle), then 0 < 2θ < 1 *sin(2θ) = 1/2 → 2θ = 30° → θ = 15°*
@MARÍAot-m6f
@MARÍAot-m6f 8 ай бұрын
In The 3rd method you construct a triangle CBE that has an angle 2 theta. ¿When do you conclude that EC contains D ?
@MARÍAot-m6f
@MARÍAot-m6f 8 ай бұрын
You make a symmetry respect BH orthogonal to AC and you will obtained a vertex E that fulfills the conditions.
@ai2657
@ai2657 7 ай бұрын
2√2cos(theta) =[tan(theta) -1]/tan(theta)
@giuseppemalaguti435
@giuseppemalaguti435 8 ай бұрын
Dai teorema dei seni risulta (sin3θ/cosθ)+1=ctg2θ..dopo le semplificazioni(θ=-45non è accettabile)risulta(tgθ)^2-4tgθ+1=0..tgθ=2+√3,θ=75(??)...tgθ=2-√3,θ=15(ok)
@holyshit922
@holyshit922 8 ай бұрын
I used the same approach but i desribed it more exactly and took me longer Although we used the same method i solved it independently Our approach is easier than presented on the video but some people may like his solutions In fact his first method is not so difficult to get His second method is focused on isosceles triangles and is more difficult then first method because we do not see at the first sight why we should look for isosceles triangles
@giuseppemalaguti435
@giuseppemalaguti435 8 ай бұрын
​​@@holyshit922x/cosT=t/sin2T... y/cosT=t/cos2T.. Divido le 2 equazioni x/y=ctg2T.. Inoltre y/cosT=(x-y) /sin3T.( x-y) /y=sin3T/cosT=x/y-1...quindi ctg2T=1+sin3T/cosT..this is the final equation.. My approach is, perhaps, not very simple.. But for me, is natural
@shriramr3820
@shriramr3820 8 ай бұрын
Is BD perpendicular to AC?
@georgesdellopoulos5808
@georgesdellopoulos5808 8 ай бұрын
no
@manojkantsamal4945
@manojkantsamal4945 8 ай бұрын
Thita =15 degree, may be
@DugRut
@DugRut 7 ай бұрын
this was painful to watch
A Very Nice Geometry Problem From China | 2 Different Methods
19:39
How Strong is Tin Foil? 💪
00:25
Brianna
Рет қаралды 69 МЛН
Amazing remote control#devil  #lilith #funny #shorts
00:30
Devil Lilith
Рет қаралды 15 МЛН
Hoodie gets wicked makeover! 😲
00:47
Justin Flom
Рет қаралды 119 МЛН
Germany Math Olympiad Challenge | Very Nice Geometry Problem
15:16
Math Booster
Рет қаралды 15 М.
1995 British Mathematics Olympiad problem
20:59
Prime Newtons
Рет қаралды 200 М.
A Very Nice Geometry Challenge | 3 Different Methods to Solve
20:47
How Strong is Tin Foil? 💪
00:25
Brianna
Рет қаралды 69 МЛН