CD=5tan(theta) = 1tan(4theta).I decided to go from there. Use tan (4theta) =2tan (2theta)/ (1-tan^2(2theta)), and then tan(2theta)=2tan(theta)/(1-tan^2(theta)), You get 5tan^4(theta) - 26tan^2(theta) +1 =0, which gives tan^2(theta)=(13+/-2rt(41))/5. The + sign in this would make theta too big (79deg) so I continued with the - sign. Now x^2=CD^2+1, so CD= 5tan(theta) = rt(x^2-1). Thus x^2 -1 = 5*(13-2rt(41)). Thus x^2 = 66 - 10rt41 =(rt41 - 5)^2, and then x=rt41-5.
@ludmilaivanova16036 ай бұрын
Tan theta is CD/AD=CD/5. Tan 4 theta=CD/1, meaning Sin 4theta=Cos4Theta, meaning 4theta=45 degrees. CD=1, DB=1. X= sqrt 2 (1.4)
@skwest Жыл бұрын
Very clever. I used brute force to solve with the formula for tan(4•theta). It's a lengthy solution, based on the initial Pythagorean result that segment CD = sqrt(x² - 1). This yields the two values: tan(theta) = (sqrt(x² - 1))/5, and tan(4•theta) = (sqrt(x² - 1))/1 These can be plugged in to the formula for tan(4•theta), and eventually solved for x = 1.403. Thanks! Nice challenge.
@lasalleman6792 Жыл бұрын
I'm getting 1.3054 for x . I ran it through triangle calculator app. And I get a right triangle CDB 50 - 90 - 40 , side CD = .8391 with side DB = 1 and x = 1.3054. Yet the answer here is 1.4031. Small discrepancy I suppose.
@ConradCorzen Жыл бұрын
You are right, according to the drawing, Cosinus 40 = 1/x, so: x = 1/cos40 = 1/0,766 = 1,3054. But the answer is [(root of)41] -5 = 6,403-5 = 1,4031... That is why I don't believe the "problem" is from Chinese math olympiad
@wolfler_vii Жыл бұрын
It’s not 40 degrees it’s 4*theta. I made the same mistake.
@ConradCorzen Жыл бұрын
Why it's not 40 degrees? the summary of angles of every triangel is 180 deg so 180 degrees - 90degrees (right angle) - 50 degrees = 40 degrees
@wolfler_vii Жыл бұрын
@@ConradCorzen it’s 4θ (theta) not 40.
@muthukumarasamymuthukumara3833 Жыл бұрын
How you know angle ACE is equal to Theda? E is the middle point of AD. F is the middle of ED. Please clarify
@muthukumarasamymuthukumara3833 Жыл бұрын
If it's middle ED=2.5 and also FD=1.25.
@MathBooster Жыл бұрын
We have drawn CE in such a way that angle ACE is θ ( it is our construction). E is not midpoint of AD and F is not midpoint of ED.
@nantesloire11 ай бұрын
Das ist nur eine Annahme von ihm ... das heißt, wenn wir annehmen, dass ACE gleich Teta ist , dann ergibt sich das , was er berechnet hat ich finde korrekt.
@nantesloire11 ай бұрын
Man kann in der Mathematik manchmal durch bloße Annahme zu reale Ergebnisse kommen .
@howardaltman7212 Жыл бұрын
A question: At 3:20, how is it known that point F is between points E and D rather than between points D and B?
@MathBooster Жыл бұрын
Because angle CFB is 4θ, and from the figure 4θ is less than 90°. That's why F should be between E and D.
@howardaltman7212 Жыл бұрын
Thank you. I also got x=6 as a solution too, but that requires angle B obtuse.@@MathBooster
@ashugarg547510 ай бұрын
Is it your assumption that angle ACB is greater than 3theta? because, if theta is 25, then CBA is 100 and ACB is 55, from which you can't cut 3*25 =75
@shatranj9 ай бұрын
If you see 4 times theta is an acute angle in the right angle triangle, so theta
@pedroangarita3412 Жыл бұрын
Very nice!👍, cheers from Colombia
@MathBooster Жыл бұрын
Thank you very much!
@yakupbuyankara5903 Жыл бұрын
X=41^(1/2)-5.
@holyshit9226 ай бұрын
cos(4theta) = 8cos^4(theta) - 8cos^2(theta)+1 sin(4theta) = (8cos^4(theta)-4cos^2(theta))tan(theta) tan(4theta) = (8cos^4(theta)-4cos^2(theta))tan(theta)/(8cos^4(theta) - 8cos^2(theta)+1) tan(4theta) = (8-4/cos^2(theta))tan(theta)(8-8/cos^2(theta)+1/cos^4(theta)) tan(4theta) = (8-4(1+tan^2(theta)))tan(theta)/(8-(8+8tan^2(theta))+(1+2tan^2(theta)+tan^4(theta))) tan(4theta) = (4-4tan^2(theta))tan(theta)/(1-6tan^2(theta)+tan^4(theta)) Here I used Chebyshev U and Chebyshev T polynomials to expand tan(4theta) T_{n}(x) = c_{n}(x^{n}+\sum\limits_{k=1}^{\lfloor\frac{n}{2} floor}\frac{(-1)^k}{2^{n}}\cdot\frac{n}{n-k}\cdot {n-k \choose k}\cdot (2x)^{n-2k}) where c_{n}(1 + \sum\limits_{k=1}^{\lfloor\frac{n}{2} floor}\frac{(-1)^k}{4^{k}}\cdot\frac{n}{n-k}\cdot {n-k \choose k}) = 1 U_{n}(x) = 1/(n+1) \frac{d}{dx} T_{n+1}(x) And if we know Legendre polynomials Chebyshev polynomials can be found as follows \sum\limits_{k=0}^{n}P_{k}(x)P_{n-k}(x) = U_{n}(x) \sum\limits_{k=0}^{n}P_{k}(x)T_{n-k}(x) = (n+1)P_{n}(x) Once we have tan(4theta) in terms ot tan(theta) we have equation tan(theta) = h/5 tan(4theta) = h
@anthony17mapoy46 Жыл бұрын
Hi! 12:58 - Why did you say one and not five here?
the drawing is not accurate: 10 l1=5:l2=1:sw=l1/100:dim x(2),y(2):wt=sw:@zoom%=@zoom%*1.4:goto 50 20 dgu1=tan(wt):dgu2=l2/l1*tan(4*wt):dg=dgu1-dgu2:return 50 gosub 20 60 wt1=wt:dg1=dg:wt=wt+sw:if wt>pi/2 then stop 65 wt2=wt:gosub 20:if dg1*dg>0 then 60 70 wt=(wt1+wt2)/2:gosub 20:if dg1*dg>0 then wt1=wt else wt2=wt 80 if abs(dg)>1E-10 then 70 90 print "der gesuchte winkel ist=";deg(wt);"°":x(0)=0:y(0)=0:x(1)=l1+l2 100 y(1)=0:x(2)=l1:y(2)=l1*tan(wt):mass=1E3/(l1+l2):goto 120 110 xbu=x*mass:ybu=y*mass:return 120 xba=0:yba=0:for a=1 to 3:ia=a:if ia=3 then ia=0 130 x=x(ia):y=y(ia):gosub 110:xbn=xbu:ybn=ybu:goto 150 140 line xba,yba,xbn,ybn:xba=xbn:yba=ybn:return 150 gosub 140:next a:gcol9:x=l1:y=0:gosub 110:xba=xbu:yba=ybu 150 x=x(2):y=y(2):gosub 110:xbn=xbu:ybn=ybu:gosub 140 der gesuchte winkel ist=11.1363413° > run in bbc basic sdl and hit ctrl tab to copy from the results window
@skwest Жыл бұрын
The drawing is never assumed to be accurate. It's the labels that are accurate.