Russian Math Olympiad | A Very Nice Geometry Problem

  Рет қаралды 133,361

Math Booster

Math Booster

Күн бұрын

Пікірлер: 105
@RAG981
@RAG981 9 ай бұрын
For the ending I used similar triangles ABC and EBO rather than chord properties. It was simpler to do.
9 ай бұрын
I did this same way 😁
@HCHLEE2007
@HCHLEE2007 7 ай бұрын
Yes much simpler
@mohamadmehdimotamed4485
@mohamadmehdimotamed4485 Ай бұрын
از تشابه دو مثلث OEB و ACB به حالت دو زاویه برابر زودتر به جواب میرسیم .(زاویه B در هر دو مشترک ،زاویه O و C هم برابر 90 درجه.
@varathan3558
@varathan3558 9 ай бұрын
at 7:40 it simpliest to draw the CA line and take cos(OBE)=cos(ABC)! The solution just appears in front of you!
@dmitrymelnik8296
@dmitrymelnik8296 8 ай бұрын
Let ABC = \alpha. Apparently, the triangle OCB is isosceles with two sides equal to R, and the angle between them is (180 - 2*alpha). We can either invoke the cosine theorem, or recognize that BC = 2* R*cos(\alpha). From EOB we find cos(\alpha) = \sqrt(2/3). The rest is arithmetic.
@hongningsuen1348
@hongningsuen1348 9 ай бұрын
One method to solve the problem is to use proportionality equation for corresponding sides of similar triangles ACB (constructed) and EBO after finding radius of the semicircle. Notes for students: Whenever you see a semicircle, equal radii and Thales theorem should come to your mind. Whenever you see right-angled triangles, Pythagoras theorem and similarity of triangles hence proportionality equation of corresponding sides should come to your mind.
@contnuum1607
@contnuum1607 7 ай бұрын
ABC is right angled triangle with angle C = 90 deg. OE = sqrt(5) => OD = sqrt(10) = radius => AB = diameter = 2 X OD = 2sqrt(10). Since ABC is right angled triangle with angle(ACB) = 90 deg => BC = AB X cos(angle(ABC)) = 2 X sqrt(10) X sqrt(10/15) = 2 X sqrt(4 X 5/3) = 4/3 X sqrt(15)
@hoehlengnarf7496
@hoehlengnarf7496 6 ай бұрын
I think you left out one step: angle(ABC) = angle(OBE) and angle at O (in OBE) is 90°, hence cos(angle(ABC)) = cos(angle(OBE)) = sqrt(10) / sqrt(15) = sqrt(10/15). I would also consider this easier than the argument in the video as I must admit I don't know (or at least I don't remember) the theorem applied to the lines involving M and N.
@venkateswararaokotaru4302
@venkateswararaokotaru4302 5 ай бұрын
Good 👍 .
@venkateswararaokotaru4302
@venkateswararaokotaru4302 5 ай бұрын
After getting OE=√5 , RADIUS OD=OA= OB=√10 and BE=√15 , We Have ∆ABC ~ ∆EBO Give us BC/AB=OB/BE So BC = (2√10)×√10/√15 = 4/3 √15 .
@jandirpassos5327
@jandirpassos5327 8 ай бұрын
I bounced the square to the right side and applied the same properties as the final part of the solution used in the video.
@MorgKev
@MorgKev 8 ай бұрын
Also by intersecting chords: DE.DE = CE.EB... this is marginally quicker and a bit less messy.
@jpl569
@jpl569 9 ай бұрын
Here is another proof… Let H be the projection of C on AB, and ß the angle EBO (also CBH). Obviously, the radius of the circle is R = √10. Then tg ß = √5 / √10 = 1 / √2, and sin ß = CH/X, and cos ß = R/BE. And also : tg ß = CH / BH. As angle COH is 2ß (nice property of the circle !), then : X = CH / sin ß = R sin 2 ß / sin ß = 2 R cos ß = 2 R^2 / BE. Then X = 2 . 10 / √15 = 4 √15 / 3. Thank you for your videos !! 🙂
@jonpress6773
@jonpress6773 9 ай бұрын
Use coordinate geometry, placing the O at the origin. The equation of the circle is x^2 + y^2 = 10. It's easy to determine the coordinates of points B and E from the givens, so use them to find the equation of line BCm which turns out to be y=x/sqrt(2) + sqrt(5). Solve the two equations together to get the coordinates of point C, which turns out to be (-sqrt(10)/3, 4/3 sqrt(5)). Now we have the coordinates of B and C, so the distance formula gives the answer. Not as elegant as Math Booster's solution, but it still works.
@BartvandenDonk
@BartvandenDonk 4 ай бұрын
It is far more elegant than his solution. 😉
@tituschirila7650
@tituschirila7650 9 ай бұрын
after finding BE you can find height from O to BE = OP (equaling area of triangle OBE) and from that half of CB (OP perpendicular from center divides OB by two) and from that by pythagora PB. PB is hlf BE - simple as that.
@ST-sd8un
@ST-sd8un 8 ай бұрын
Excelente! OP (raíz 15)= (raíz 5)(raíz 10) OP= [(raíz 5)(raíz 10)]/[(raíz 5)(raíz 3)] OP= raíz 10/raíz 3 OP=(raíz 30)/3 Pitagoras BP^2 + [(raíz 30)/3]^2 = (raíz 10)^2 BP^2 = 10 - (30/9) BP^2 = 60/9 BP= 2(raíz 15)/3 BC = 2 BP BC = 4 (raíz 15)/3
@감나빗-26
@감나빗-26 8 ай бұрын
닮음을 이용하면 선분 BC의 중점을 M이라 했을 때 선분 EB:선분OB=선분OB:선분BM이므로 선분 BM의 길이는 sqrt(20/3) 선분 BC의 길이는 4sqrt(5/3)임을 알 수 있습니다
@اقرء
@اقرء 7 ай бұрын
Tanks for watching
@magdyeldajany9973
@magdyeldajany9973 5 ай бұрын
Extend the chord DE to intersect the circle at point L. From the two chords CB and DL, we can find CE
@vcvartak7111
@vcvartak7111 9 ай бұрын
You can also join AC and ACB and BOE are similar triangles and take side proportion
@arulbiswas1260
@arulbiswas1260 9 ай бұрын
Such ingenious thinking!!!!
@hongningsuen1348
@hongningsuen1348 9 ай бұрын
Good use of Thales theorem.
@NorArt-mb3lv
@NorArt-mb3lv 8 ай бұрын
I did it the same way.
@tgx3529
@tgx3529 5 ай бұрын
This problem can also be solved by older students with the help of Thalet's circle - the angle at C is right. The Pythagorean theorem gives 40= k^2+(z+sqrt15)^2 where k is the line connecting point C to the diameter. sinα is in the small triangle sqrt5/sqrt15=sqrt3/3 sin's theorem for a right triangle above the diameter gives sinα/k=sin90/2sqrt10... it leads to the same result of sqrt(80/3)-sqrt15 for the shorter segment of the unknown segment.
@timc5768
@timc5768 9 ай бұрын
Perhaps also: By similar triangles DFA and BFD ( equivalent to using intersecting chords theorem, I think): [r +sqrt(5))/sqrt(5) = (sqrt(5))/[r - sqrt(5)], where 'r = radius', so ' r^2 - 5 = 5', and 'r = sqrt(10)', so BE = sqrt(15) , (by Pythag), and 'AB = 2sqrt(10)' Then by similar triangles EOB and ACB : [OB/BE) = [CB/BA] , (= cos(B)), so CB = [2sqrt(10)][{sqrt(10)}/sqrt(15)}] = 2sqrt(20/3) = 4sqrt(5/3) = (4/3)sqrt(15)
@TheAndreArtus
@TheAndreArtus 9 ай бұрын
That is the same way I went with it.
@bakrantz
@bakrantz 5 ай бұрын
Triangle ABC is a right triangle and similar to triangle BOE. So X can be solved for by similarity.
@JamesCalabut
@JamesCalabut 6 ай бұрын
Triangle BOE is similar to BCA, so sqrt(15)/sqrt(10) = 2*sqrt(10)/x. Thus x=2*10/sqrt(15). Simplifying: x=2*10*sqrt(15)/15=4/3*sqrt(15)
@lusalalusala2966
@lusalalusala2966 6 ай бұрын
Draw a perpendicular line to CB from O, which intersects it at the midpoint T since CB is a chord. Next the area of the triangle OEB is sqrt(10)*sqrt(5)/2 =EB*OT/2. Therefor OT= sqrt(10)*sqrt(5)/sqrt(15)=sqrt(10/3). Finally CB=2 TB, where TB=sqrt(OB^2-OT^2)=sqrt(10-10/3)=sqrt(20/3)=2sqrt(5/3), ie., CB=4sqrt(5/3).
@hongningsuen1348
@hongningsuen1348 9 ай бұрын
Method 1 using Thales theorem and similar triangles: 1. Let BC be x. 2. Side of square OEDF = √5 (property of square) Hence diagonal of square OD = √[(√5)^2 + (√5)^2)] = √10 (Pythagoras theorem) Hence AO = BO = OD = √10 (radii of semicircle) 3. Draw AC to form ∆ABC. Angle ACD = 90 (Thales theorem) 4. In ∆ACD AC^2 = AB^2 - BC^2 (Pythagoras theorem) = (AO + BO)^2 - x^2 = (√10 + √10)^2 - x^2 = 40 - x^2 AC = √(40 - x^2) 5. ∆ABC ~ ∆EBO (AAA) Hence AC/EO = BC/BO [√(40 - x^2)]/√5 = x/√10 (40 - x^2) = x^2/2 3x^2 = 80 x^2 = 80/3 x = √80/√3 = (√3√80)/3 = √3 √(16 x 5)/3 = (4√15)/3 Method 2 using intersecting chord theorem: 1. Side of square OEDF = √5 (property of square) Hence diagonal of square OD = √[(√5)^2 + (√5)^2)] = √10 (Pythagoras theorem) Hence AO = BO = OD = √10 (radii of semicircle) 2. In ∆BOE BE^2 = BO^2 + OE^2 = 10 + 5 BE = √15 3. Extend DE to G on arc BC to form chord DG. DE = GE = √5 (OE is perpendicular bisector of chord DG from centre.) 4. For chords BC and DG intersecting at E DE x GE = BE x EC (intersecting chord theorem) √5 x √5 = √15 x EC Hence EC = √(5/3) 5. BC = BE + EC = √15 + √(5/3) = (4√15)/3
@KipIngram
@KipIngram 4 ай бұрын
When I mention x and y coordinates, it is with the center of the circle taken as origin. The square has side length sqrt(5), so the circle has radius sqrt(2)*sqrt(5)=sqrt(10). So the angle X makes with the horizontal axis at B is arctan(sqrt(5)/sqrt(10)) = arctan(1/sqrt(2)). We can now use the law of sines to get the vertical coordinate of C: 2*y(C)/sin(2*arctan(1/sqrt(2)) = 2*sqrt(10) y(C) = sqrt(10)*sin(2*arctan(1/sqrt(2)) y(C) = 2.9814 Now we can use these facts to get the x coordinate of C: 2.9814/(sqrt(10)-x) = 1/sqrt(2) sqrt(10)-x = 2.9814*sqrt(2) x = sqrt(10) - 2.9814*sqrt(2) x = -1.0541 Finally we can use the Pythagorean theorem to get X: X^2 = (sqrt(10)+1.0541)^2 + (2.9814)^2 X^2 = 26.666 X = 5.1640 Q.E.D.
@maxgladkikh2326
@maxgladkikh2326 6 ай бұрын
Я помню эту задачу! 9 класс советской школы, 40 лет назад. Почти все справились без затруднений. Как она может быть олимпиадной?
@kateknowles8055
@kateknowles8055 4 ай бұрын
(r - sqrt(5))(r+sqrt(5)) = r.r -5 with OE produced to the circumference at G so that OG = radius =r. Now if EO is produced also to meet a reflection (H) of G in diameter AB, the product HE.EG is the r.r-5 mentioned at the start. HE.EG = ED.ED by the intersection of HG and the chord DE extended. so r.r -5=5 so r.r =10 so r=sqrt(10) Now to notice that CE.EB also = ED.ED by intersection of chords so this is 5 also From triangle OBE, Pythagoras' theorem gives : EB.EB = OB.OB+ OE.OE = r.r + 5 = 15 CE = 5/sqrt(15) EB = sqrt(15) so BC = 5/sqrt(15) + sqrt(15) = 5/15 times (sqrt(15) ) +(15/15) sqrt ( 15 ) = 4/3 of sqrt (15)
@ExpressStaveNotation
@ExpressStaveNotation 9 ай бұрын
Extend DE to make the chord that intersects with chord BC. R5.r5 = BE.EC 5 = r15.EC EC = 5/r15 BC = 5/r15 + r15.
@MrPaulc222
@MrPaulc222 7 ай бұрын
r = sqrt(10) as it's the square's diagonal. sqrt(5)^2 + sqrt(10)^2 = (EB^2, so EB = sqrt(15) BCA and BEO are congruent. (EB)/(OB) = (AB)/(CB) Call (CB), x as it's the target value. (sqrt(15))/(sqrt(10)) = (2*sqrt(10)/x Cross multiply: (sqrt(10)) * (2*sqrt(10)) = (sqrt(15)*x 20 = (sqrt(15)*x 400 = 15x^2 Reduce: 80 = 3x^2 (80/3) = x^2 (sqrt(80))/(sqrt(3) = x. Rationalise to (sqrt(240))/3 = x Simplify: (4*sqrt(15))/3 = x I have 5.164(rounded to 3dp)
@grzegorzmordas9134
@grzegorzmordas9134 7 ай бұрын
The radius of the circle is Sqrt(2x5) = Sqrt(10). Triangles BEO and ABC are similar. Thus: OB/BE=AB/BC or r/Sqrt(r^2+5) = x/2r. Substituting r=Sqrt(10) we get: Sqrt(10)/Sqrt(15) = x/2Sqrt(10), hence: x=20/Sqrt(15) = 4Sqrt(15)/3.
@marcgriselhubert3915
@marcgriselhubert3915 9 ай бұрын
The side length of the square is sqrt(5) and the radius of the circle is sqrt(2).sqrt(5) = sqrt(10) We us an orthonormal, center O, first axis (OB). The equation of the circle is x^2 + y^2 = 10 We have B(sqrt(10);0) and E(0; sqrt(5)), then VectorBC(-sqrt(10); sqrt(5)) is colinear to VectorU(-sqrt(2); 1) The equation of (BE) is: (x -sqrt(10)).(1) - (y).(-sqrt(2)) = 0 or x + sqrt(2).y -sqrt(10) = 0, or x= -sqrt(2).y +sqrt(10) C is the intersection of (BE) and the circle, the ordinate of C is such as: (-sqrt(2).y +sqrt(10))^2 + y^2 = 10, or 3.y^2 -4.sqrt(5).y = 0 So the ordinate of C is (4.sqrt(5))/3, and its abscissa is -sqrt(2). (4.sqrt(5))/3) + sqrt(10) = (-4.sqrt(10))/3 + sqrt(10) = -sqrt(10)/3 Finally we have C(-sqrt(10)/3; (4.sqrt(5))/3) and Vector BC(-4.sqrt(10))/3; (4.sqrt(5))/3) and BC^2 = 160/9 + 80/9 = 240/9 Finally BC = sqrt(240)/3 = (4.sqrt(15))/3.
@kaistmechanic
@kaistmechanic Ай бұрын
If you use the similarity condition of a triangle, it's much easier to find the answer
@dlspark7965
@dlspark7965 8 ай бұрын
BC = (4/3)*sqrt(3A) where A = Area of square OEDF
@yadonghu6219
@yadonghu6219 8 ай бұрын
连接A,C;三角形ACB为直角三角形。直角三角形ACB与EOB相似,对应边成比例。BC:sqrt(10)=2*sqrt(10):sqrt(15)。BC=20/sqrt(15)。
@marioalb9726
@marioalb9726 6 ай бұрын
A = ½R² = 5 cm² R = √10 cm tan α = s/R = √5 / √10 = 1/√2 α = 35,26° x = 2R cos α x = 5,164 cm ( Solved √ )
@DB-lg5sq
@DB-lg5sq 2 ай бұрын
شكرا لكم على المجهودات يمكن استعمال (cosB)^2=5/4r^2 X^2=(2r)^2 (1+2cos2B) = 2(2r)^2(cosB)^2 X^2= 10
@MarieAnne.
@MarieAnne. 5 ай бұрын
My solution started out the same Find side length of square = √5 Find radius of circle = √10 Find length of BE = √15 But instead of completing the circle, I joined A to B to form △ABC We find that △ABC ~ △EBO by AA ∠ACB = 90° (angle subtended by diameter = 90°) and ∠EOB = 90° ∠ABC = ∠EBO (same angle) Using similar triangles we get: BC/BO = AB/EB BC/√10 = 2√10/√15 *BC = 20/√15 = 4√15/3*
@venkateswararaokotaru4302
@venkateswararaokotaru4302 5 ай бұрын
After getting OE=√5 , RADIUS OD=OA= OB=√10 and BE=√15 , We Have ∆ABC ~ ∆EBO Give us BC/AB=OB/BE So BC = (2√10)×√10/√15 =(4/3) √15 .
@tamirerez2547
@tamirerez2547 6 ай бұрын
Very nice solution 👍
@murdock5537
@murdock5537 8 ай бұрын
φ = 30°; area ∎DFOE = 5 → FO = a = √5 → DO = a√2 = r = √10 ∆ ABC → sin(BCA) = 1 → AB = 2r ∆ BEO → EO = r/√2; BO = r → BE = r√6/2 → ABC = δ → cos⁡(δ) = 2r/r√6 = √6/3 = BC/2r → BC = 4√15/3
@plamenpenchev262
@plamenpenchev262 5 ай бұрын
Put the same square to the right. Chord property then Sqrt(15)×|CE| = sqrt(5)×sqrt(5) Then sqrt(15) + sqrt(15)/3
@user-gn4mq5cs6e
@user-gn4mq5cs6e 8 ай бұрын
Drop a perpendicular on X, it will cut at x/2 and calculate X straight away
@whoskiana
@whoskiana 2 ай бұрын
you can also solve this by similarity, can't you? Triangle EOB ~ ACB (ACB=EOB=90° and EBO is common), from there you can find BC
@InventPeace1
@InventPeace1 4 ай бұрын
Did they leave out of the description that " O " was the bisection point of AB ? InventPeaceNotWar
@gaylespencer6188
@gaylespencer6188 9 ай бұрын
Found angle CBA. Then took Cos (CBA) and multiplied it by the diameter of (2*10^.5) = 5.16......
@quigonkenny
@quigonkenny 9 ай бұрын
Let r be the radius of the circle and s be the side length of the square. As square OEDF has area 5, its side length is the square root of that area, or √5. Draw radius OD. In addition to being a radius of the semicircle, OD is also a diagonal of the square. As such, it's length is √2 times the side length. r = √2•√5 = √10. Triangle ∆EOB: EO² + OB² = BE² (√5)² + (√10)² = BE² BE² = 5 + 10 = 15 BE = √15 Draw CA. As C is on the circumference of the semicircle and is the angle between the ends of the diameter AB, ∠ C = 90°. As ∆EOB and ∆BCA share angle ∠B and are both right triangles, ∆EOB and ∆BCA are similar. Triangle ∆BCA: BC/AB = OB/BE BC/2√10 = √10/√15 = √2/√3 BC = (2√10)(√2/√3) BC = 4√5/√3 = 4√15/3 ≈ 5.164
@zdrastvutye
@zdrastvutye 9 ай бұрын
i have calculated repeatedly the deviation of point c from the circle with interpolation: 10 print "mathbooster-russian math olympiad":a1=5:l1=sqr(a1) 20 dim x(3,2),y(3,2):r=l1*sqr(2):xb=2*r:yb=0:yd=l1:@zoom%=1.4*@zoom% 30 xd=r-sqr(r*r-yd^2):xe=xd+l1:ye=yd:xb=2*r:yb=0:ye=l1:sw=.1:goto 70 40 dxk=(xe-xb)*k:xc=xb+dxk:dyk=(ye-yb)*k:yc=yb+dyk 50 dgu1=(xc-r)^2/a1:dgu2=yc^2/a1:dgu3=r*r/a1:dg=dgu1+dgu2-dgu3 60 return 70 k=sw:gosub 40 80 dg1=dg:k1=k:k=k+sw:k2=k:gosub 40:if dg1*dg>0 then 80 90 k=(k1+k2)/2:gosub 40:if dg1*dg>0 then k1=k else k2=k 100 if abs(dg)>1E-10 then 90 110 lg=sqr((xc-xb)^2+(yc-yb)^2):print "der abstand BC="; lg 120 x(0,0)=xd:y(0,0)=0:x(0,1)=x(0,0)+l1:y(0,1)=0:x(0,2)=xd:y(0,2)=l1 130 x(1,0)=x(0,0)+l1:y(1,0)=0:x(1,1)=x(1,0):y(1,1)=l1:x(1,2)=xd:y(1,2)=yd 140 x(2,0)=xe:y(2,0)=ye:x(2,1)=xc:y(2,1)=yc:x(2,2)=xd:y(2,2)=yd 150 x(3,0)=r:y(3,0)=0:x(3,1)=2*r:y(3,1)=0:x(3,2)=xe:y(3,2)=ye 160 masx=1000/2*r:masy=700/r:if masx run in bbc basic sdl and hit ctrl tab to copy from the results window
@mg.1044
@mg.1044 6 ай бұрын
metot 2 ACB ~ OEB sin ß = CB /2r = r/ EB
@TheCodeFather254
@TheCodeFather254 5 күн бұрын
Why not create the line AC and use trigonometry to solve for CB?
@GraeTheGreat-zl9us
@GraeTheGreat-zl9us 7 ай бұрын
What app he using???
@احمدالجوهر-ظ4ت
@احمدالجوهر-ظ4ت 7 ай бұрын
OB×AB=CB×EB ACB right angled
@TyyylerDurden
@TyyylerDurden 2 ай бұрын
I found BC through the similarity between the right triangle CAB (it is right because its hype is the circle's diameter) and the triangle OEB. 20/root 15
@JPTaquari
@JPTaquari 5 ай бұрын
I did it by triangulation and then by similarity of triangles and arrived at 5.24228. I must have rounded up a little. Nice exercise, congratulations From Brasil !
@alexeygourevich6967
@alexeygourevich6967 6 ай бұрын
Радиус окр-ти DO = √2 * DE = √2 * √5 = √10 = ОВ. Пусть угол ЕВО равен β. Тогда tgβ =√5/ √10 = 1/√2. Но треуг АСВ - прямоугольный с углом С=π/2, поэтому АС/СВ = tgβ = 1/√2. Также AC^2+ CВ^2 = (2√10)^2 = 40, отсюда, поделив на CВ^2, получим (1/√2)^2 + 1 = 40/ CВ^2, или 3/2 = 40/ CВ^2, отсюда CВ^2 = 80/3, т.е. CВ = √(80/3) = √(16*5/3) = 4* √((3*5)/(3*3)) = 4*√15 / 3.
@santiagoarosam430
@santiagoarosam430 9 ай бұрын
a²=5→ a=√5→ r= Diagonal del cuadrado =a√2=√5√2=√10→ EB²=(√5)²+(√10)²=15→ EB=√15→ Si G es la proyección ortogonal de O sobre EB y h=OG→ h√15=√5√10→ h=√50/√15 → Razón de semejanza entre los triángulos ACB y OGB = s=AB/OB=2r/r=2→ AC=2h→ CB²=AB²-AC²=(2r)²-(2h)²=(2√10)²-(2√50/√15)²→ CB=20√15/15 =4√15/3. Gracias y saludos.
@joyhuang7845
@joyhuang7845 8 ай бұрын
有另一左右對稱正方形,畫出來之後,也是利用圓內幕性質,即可求出EC
@constantinfedorov2307
@constantinfedorov2307 8 ай бұрын
Я не очень понимаю, как такая элементарная задачка могла попасть на олимпиаду. В условии дано все - радиус известен, это диагональ квадрата, отрезок BE тоже считается тривиально (стороны EO = √5 OB = √10 => BE = √15), и дальше опять тривиальное подобие треугольников ABC и EBO. BC/AB = OB/EB; BC = (2√10)√(10/15) = (4/3)√15; Тут олимпиадой и не пахнет, на ЕГЭ бывают задачи сложнее.
@UrievJackal
@UrievJackal 8 ай бұрын
We don't really know, which level of math, this Olympiad demands. Therefore, when first time I used a sine for BOE triangle, maybe I was wrong. Maybe children of that Olympiad may not know of trigonometry. So the best solution is to use similar triangles BOE and BCA at the end. Thus, BO/BE = x/AB; R/BE = x/2R.
@georiashang1120
@georiashang1120 6 ай бұрын
R=BO=DO=CO=FE=√10 ; EO=√5 ; cos(∠EBO)=√2/√3 ; BC*(1/2)=2√5/√3 ; BC=4√5/√3=4√15/3
@retarody9542
@retarody9542 5 ай бұрын
Cos of tria = √10 / √15 2r = 2√10 X = cos x 2r = 4√15 / 3
@michallesz2
@michallesz2 8 ай бұрын
IF BD=R then AO=OB and OD=R ERROR
@Cricketdoctor_1999
@Cricketdoctor_1999 9 ай бұрын
🤙Nice geometry problem bro!...
@sakibalmahmud686
@sakibalmahmud686 6 ай бұрын
Triangle ABC and Triangle OBE symmetric.. Then OBE is fully known..then ABC aslo known..from that..
@ivantatarchuk697
@ivantatarchuk697 7 ай бұрын
Why OD is the radius of semi circle?
@cabinetdecuriositestechniq3059
@cabinetdecuriositestechniq3059 6 ай бұрын
Yes, why is it the radius ? The entire demonstration is based on this false premise.
@LukovaMadubo
@LukovaMadubo 6 ай бұрын
A distance from the centre to the circumference of the circle is having a name,it is called RADIUS
@cabinetdecuriositestechniq3059
@cabinetdecuriositestechniq3059 6 ай бұрын
@@LukovaMadubo ...the supposed center of the circle. Nothing shows that O is the center of the circle. Therefore, OD is not the radius.
@ivantatarchuk697
@ivantatarchuk697 6 ай бұрын
@@LukovaMadubo Sorry. I haven't noticed that O is the center.
@shoebmd428
@shoebmd428 7 ай бұрын
Triangle ACB and OEB are similar, , it could have saved some steps
@1ciricola
@1ciricola 9 ай бұрын
The radius of the circle is the length of line segment DO, which is √10 , since the length of each side of the square is √5. A line drawn between C and O likewise has a length of √10 ΔCOB is an isosceles triangle. Since line segments EO and OB are known [√5 & √10 respectively], arctan .707 = 35.26° The isosceles triangle has two angles of 35.26° ∠CBO and ∠BCO The Altitude bisects the base BC at M. The length of each half can be calculated using the cosine function. Cos 35.26° = BM/BO = BM/√10 (.816)(√10) = BM = 2.58, length of BC = (2)(BM) = 5.16
@cya3mdirl158
@cya3mdirl158 6 ай бұрын
10:05 not obvious
@감나빗-26
@감나빗-26 8 ай бұрын
is this for 8grade students?
@wiwa1962
@wiwa1962 9 ай бұрын
|FD| = |OF| = sqrt(5) |OD| = r = sqrt(5) x sqrt(2) = sqrt (10) |BE| =sqrt (sqrt(10))^2 + (sqrt(5))^2) = sqrt(15) P(triangle) OBE = 1/2 x |OB| x |OE| = 5/2sqrt(2) and P(triangle) OBE = 1/2 x h(trangle BOE) x |BE| = 5/2sqrt(2) => h(trangle BOE) = 1/3 x sqrt(30) |OB| = |OC| = r = sqrt(10) => r^2 = (h (trangle BOE))^2 +(1/2 x |BC| )^2 => |BC| = 4/3 x sqrt(15)
@MYldrm
@MYldrm 2 ай бұрын
Five ore pipe?
@himadrikhanra7463
@himadrikhanra7463 8 ай бұрын
14+ 4root 5....? Line construction...similarly...diameter...Pythagoras
@just_isaac15
@just_isaac15 5 ай бұрын
To the people who are stating other methods, I am so jealous😭😭
@inventionssimpleexpression7694
@inventionssimpleexpression7694 3 ай бұрын
Trigonometri kulnarak çözmek daha pratik ve şık
@SGuerra
@SGuerra 3 ай бұрын
Uau! Que questão bonita. Eu encontrei uma solução um pouco diferente. Parabéns pela escolha!!! Brasil - setembro de 2024.
@pepe_valitor487
@pepe_valitor487 25 күн бұрын
&.Square OEDF: 5=(side)² > side=√5 side=OE=ED=DF=FO=√5 __ __ __ &.∆ODFrect: OF=DF=√5 ; OD=r=rad __ __ __ (Teor.Pithag.) OD²=OF²+DF² __ OD²=(√5)²+(√5)²=2(√5)²=2•5=10 __ OD=√10=r __ __ &.∆ACBrect: AB=2r=2√10 ; CB=x __ __ &.∆EOBrect: OE=√5 ; OB=√10 __ __ __ (T.Pythag.) EB²=OE²+OB² __ EB²=(√5)²+(√10)²=5+10=15 __ EB=√15 &.∆ACB~∆EOB. (similar∆, propiedad AAA) __ __ __ __ AB/CB=EB/OB __ __ __ __ AB=2√10 ; CB=x ; EB=√15 ; OB=√10 (2•√10)/x=(√15)/√10 2•(√10)•√10=x•√15 > 2•(√10)²=x•√15 2•10=x•√15 > 20=x•√15 > x=20/√15 x=(20•√15)/(√15•√15)=(20•√15)/15 _______________________ x=(4•√15)/3=~5.16cm✔️ 👍 _______________________
@Dauooria
@Dauooria 9 ай бұрын
매일 매일 재미있는 수학 영상을 올려주셔서 감사합니다! I'm korean student
@alamshaikhahmad2415
@alamshaikhahmad2415 9 ай бұрын
5×5=25×4=100sqrooth=10
@vrcfncpdci
@vrcfncpdci 4 ай бұрын
A good problemi for mr. perrelman the russian genius
@chimaths-class
@chimaths-class 8 ай бұрын
Great
@Misha-g3b
@Misha-g3b 7 ай бұрын
2, -2, 2i, -2i.
@ΓΕΩΡΓΙΟΣΔΟΥΖΕΝΗΣ-χ9κ
@ΓΕΩΡΓΙΟΣΔΟΥΖΕΝΗΣ-χ9κ 6 ай бұрын
There is another way of doing it simplified yielding the same resault.
@RafaelCardoso-gu6pq
@RafaelCardoso-gu6pq 8 ай бұрын
Mel, o cara que erra essa aí não acerta nem o local de prova
@sergovoy
@sergovoy 7 ай бұрын
Корневая труба)))
@flastkchance5312
@flastkchance5312 6 ай бұрын
Turkish children are given only 2 minutes to solve this.
@GUIDORAFAEL2304
@GUIDORAFAEL2304 6 ай бұрын
Show!
@WlodekCiejkaTV
@WlodekCiejkaTV 8 ай бұрын
There is much simpler solution. Angle ACB is 90 =› triangles ABC and BOE are similar =› OB/EB=CB/AB =› CB=AB*OB/EB =› CB=2√10*√10/√15=20/√15=4√15/3. Result the same but solution more elegat.
@RK-tf8pq
@RK-tf8pq 4 ай бұрын
Do proper video editing before presenting.
@sorourhashemi3249
@sorourhashemi3249 4 ай бұрын
@mehmeteglen1521
@mehmeteglen1521 8 ай бұрын
10 bence bir dakika sürmedi
@wasimahmad-t6c
@wasimahmad-t6c 5 ай бұрын
10
@wasimahmad-t6c
@wasimahmad-t6c 4 ай бұрын
5×1.4142135624=7.07×7.07=50×3.14159268=157.07-10×10=57.07÷4=14.2699
@amritpatel3794
@amritpatel3794 4 ай бұрын
You took long rout. The angle ACB is 90* , since it lie within semi circle. and EOB is also 90*. So both triangle ABC & EBC are similar triangles. And you are done !!!
Square inside a triangle | Math Olympiad Geometry Problem
14:38
Math Booster
Рет қаралды 10 М.
Cat mode and a glass of water #family #humor #fun
00:22
Kotiki_Z
Рет қаралды 42 МЛН
Don’t Choose The Wrong Box 😱
00:41
Topper Guild
Рет қаралды 62 МЛН
人是不能做到吗?#火影忍者 #家人  #佐助
00:20
火影忍者一家
Рет қаралды 20 МЛН
Viral question from China
8:04
MindYourDecisions
Рет қаралды 738 М.
Many Students Failed To Solve This Geometry Problem
19:56
Math Booster
Рет қаралды 30 М.
Is this even solvable? What is the radius?
12:21
MindYourDecisions
Рет қаралды 184 М.
Hardest Exam Question | Only 8% of students got this math question correct
11:28
A Very Nice Geometry Problem | Math Olympiad | 2 Different Methods
16:49
Math Olympiad 3^m-2^m=65 | Math Olympiad Problems | Algebra
10:49
OnlineMaths TV
Рет қаралды 2,7 МЛН
Cat mode and a glass of water #family #humor #fun
00:22
Kotiki_Z
Рет қаралды 42 МЛН