For the ending I used similar triangles ABC and EBO rather than chord properties. It was simpler to do.
9 ай бұрын
I did this same way 😁
@HCHLEE20077 ай бұрын
Yes much simpler
@mohamadmehdimotamed4485Ай бұрын
از تشابه دو مثلث OEB و ACB به حالت دو زاویه برابر زودتر به جواب میرسیم .(زاویه B در هر دو مشترک ،زاویه O و C هم برابر 90 درجه.
@varathan35589 ай бұрын
at 7:40 it simpliest to draw the CA line and take cos(OBE)=cos(ABC)! The solution just appears in front of you!
@dmitrymelnik82968 ай бұрын
Let ABC = \alpha. Apparently, the triangle OCB is isosceles with two sides equal to R, and the angle between them is (180 - 2*alpha). We can either invoke the cosine theorem, or recognize that BC = 2* R*cos(\alpha). From EOB we find cos(\alpha) = \sqrt(2/3). The rest is arithmetic.
@hongningsuen13489 ай бұрын
One method to solve the problem is to use proportionality equation for corresponding sides of similar triangles ACB (constructed) and EBO after finding radius of the semicircle. Notes for students: Whenever you see a semicircle, equal radii and Thales theorem should come to your mind. Whenever you see right-angled triangles, Pythagoras theorem and similarity of triangles hence proportionality equation of corresponding sides should come to your mind.
@contnuum16077 ай бұрын
ABC is right angled triangle with angle C = 90 deg. OE = sqrt(5) => OD = sqrt(10) = radius => AB = diameter = 2 X OD = 2sqrt(10). Since ABC is right angled triangle with angle(ACB) = 90 deg => BC = AB X cos(angle(ABC)) = 2 X sqrt(10) X sqrt(10/15) = 2 X sqrt(4 X 5/3) = 4/3 X sqrt(15)
@hoehlengnarf74966 ай бұрын
I think you left out one step: angle(ABC) = angle(OBE) and angle at O (in OBE) is 90°, hence cos(angle(ABC)) = cos(angle(OBE)) = sqrt(10) / sqrt(15) = sqrt(10/15). I would also consider this easier than the argument in the video as I must admit I don't know (or at least I don't remember) the theorem applied to the lines involving M and N.
@venkateswararaokotaru43025 ай бұрын
Good 👍 .
@venkateswararaokotaru43025 ай бұрын
After getting OE=√5 , RADIUS OD=OA= OB=√10 and BE=√15 , We Have ∆ABC ~ ∆EBO Give us BC/AB=OB/BE So BC = (2√10)×√10/√15 = 4/3 √15 .
@jandirpassos53278 ай бұрын
I bounced the square to the right side and applied the same properties as the final part of the solution used in the video.
@MorgKev8 ай бұрын
Also by intersecting chords: DE.DE = CE.EB... this is marginally quicker and a bit less messy.
@jpl5699 ай бұрын
Here is another proof… Let H be the projection of C on AB, and ß the angle EBO (also CBH). Obviously, the radius of the circle is R = √10. Then tg ß = √5 / √10 = 1 / √2, and sin ß = CH/X, and cos ß = R/BE. And also : tg ß = CH / BH. As angle COH is 2ß (nice property of the circle !), then : X = CH / sin ß = R sin 2 ß / sin ß = 2 R cos ß = 2 R^2 / BE. Then X = 2 . 10 / √15 = 4 √15 / 3. Thank you for your videos !! 🙂
@jonpress67739 ай бұрын
Use coordinate geometry, placing the O at the origin. The equation of the circle is x^2 + y^2 = 10. It's easy to determine the coordinates of points B and E from the givens, so use them to find the equation of line BCm which turns out to be y=x/sqrt(2) + sqrt(5). Solve the two equations together to get the coordinates of point C, which turns out to be (-sqrt(10)/3, 4/3 sqrt(5)). Now we have the coordinates of B and C, so the distance formula gives the answer. Not as elegant as Math Booster's solution, but it still works.
@BartvandenDonk4 ай бұрын
It is far more elegant than his solution. 😉
@tituschirila76509 ай бұрын
after finding BE you can find height from O to BE = OP (equaling area of triangle OBE) and from that half of CB (OP perpendicular from center divides OB by two) and from that by pythagora PB. PB is hlf BE - simple as that.
닮음을 이용하면 선분 BC의 중점을 M이라 했을 때 선분 EB:선분OB=선분OB:선분BM이므로 선분 BM의 길이는 sqrt(20/3) 선분 BC의 길이는 4sqrt(5/3)임을 알 수 있습니다
@اقرء7 ай бұрын
Tanks for watching
@magdyeldajany99735 ай бұрын
Extend the chord DE to intersect the circle at point L. From the two chords CB and DL, we can find CE
@vcvartak71119 ай бұрын
You can also join AC and ACB and BOE are similar triangles and take side proportion
@arulbiswas12609 ай бұрын
Such ingenious thinking!!!!
@hongningsuen13489 ай бұрын
Good use of Thales theorem.
@NorArt-mb3lv8 ай бұрын
I did it the same way.
@tgx35295 ай бұрын
This problem can also be solved by older students with the help of Thalet's circle - the angle at C is right. The Pythagorean theorem gives 40= k^2+(z+sqrt15)^2 where k is the line connecting point C to the diameter. sinα is in the small triangle sqrt5/sqrt15=sqrt3/3 sin's theorem for a right triangle above the diameter gives sinα/k=sin90/2sqrt10... it leads to the same result of sqrt(80/3)-sqrt15 for the shorter segment of the unknown segment.
@timc57689 ай бұрын
Perhaps also: By similar triangles DFA and BFD ( equivalent to using intersecting chords theorem, I think): [r +sqrt(5))/sqrt(5) = (sqrt(5))/[r - sqrt(5)], where 'r = radius', so ' r^2 - 5 = 5', and 'r = sqrt(10)', so BE = sqrt(15) , (by Pythag), and 'AB = 2sqrt(10)' Then by similar triangles EOB and ACB : [OB/BE) = [CB/BA] , (= cos(B)), so CB = [2sqrt(10)][{sqrt(10)}/sqrt(15)}] = 2sqrt(20/3) = 4sqrt(5/3) = (4/3)sqrt(15)
@TheAndreArtus9 ай бұрын
That is the same way I went with it.
@bakrantz5 ай бұрын
Triangle ABC is a right triangle and similar to triangle BOE. So X can be solved for by similarity.
@JamesCalabut6 ай бұрын
Triangle BOE is similar to BCA, so sqrt(15)/sqrt(10) = 2*sqrt(10)/x. Thus x=2*10/sqrt(15). Simplifying: x=2*10*sqrt(15)/15=4/3*sqrt(15)
@lusalalusala29666 ай бұрын
Draw a perpendicular line to CB from O, which intersects it at the midpoint T since CB is a chord. Next the area of the triangle OEB is sqrt(10)*sqrt(5)/2 =EB*OT/2. Therefor OT= sqrt(10)*sqrt(5)/sqrt(15)=sqrt(10/3). Finally CB=2 TB, where TB=sqrt(OB^2-OT^2)=sqrt(10-10/3)=sqrt(20/3)=2sqrt(5/3), ie., CB=4sqrt(5/3).
@hongningsuen13489 ай бұрын
Method 1 using Thales theorem and similar triangles: 1. Let BC be x. 2. Side of square OEDF = √5 (property of square) Hence diagonal of square OD = √[(√5)^2 + (√5)^2)] = √10 (Pythagoras theorem) Hence AO = BO = OD = √10 (radii of semicircle) 3. Draw AC to form ∆ABC. Angle ACD = 90 (Thales theorem) 4. In ∆ACD AC^2 = AB^2 - BC^2 (Pythagoras theorem) = (AO + BO)^2 - x^2 = (√10 + √10)^2 - x^2 = 40 - x^2 AC = √(40 - x^2) 5. ∆ABC ~ ∆EBO (AAA) Hence AC/EO = BC/BO [√(40 - x^2)]/√5 = x/√10 (40 - x^2) = x^2/2 3x^2 = 80 x^2 = 80/3 x = √80/√3 = (√3√80)/3 = √3 √(16 x 5)/3 = (4√15)/3 Method 2 using intersecting chord theorem: 1. Side of square OEDF = √5 (property of square) Hence diagonal of square OD = √[(√5)^2 + (√5)^2)] = √10 (Pythagoras theorem) Hence AO = BO = OD = √10 (radii of semicircle) 2. In ∆BOE BE^2 = BO^2 + OE^2 = 10 + 5 BE = √15 3. Extend DE to G on arc BC to form chord DG. DE = GE = √5 (OE is perpendicular bisector of chord DG from centre.) 4. For chords BC and DG intersecting at E DE x GE = BE x EC (intersecting chord theorem) √5 x √5 = √15 x EC Hence EC = √(5/3) 5. BC = BE + EC = √15 + √(5/3) = (4√15)/3
@KipIngram4 ай бұрын
When I mention x and y coordinates, it is with the center of the circle taken as origin. The square has side length sqrt(5), so the circle has radius sqrt(2)*sqrt(5)=sqrt(10). So the angle X makes with the horizontal axis at B is arctan(sqrt(5)/sqrt(10)) = arctan(1/sqrt(2)). We can now use the law of sines to get the vertical coordinate of C: 2*y(C)/sin(2*arctan(1/sqrt(2)) = 2*sqrt(10) y(C) = sqrt(10)*sin(2*arctan(1/sqrt(2)) y(C) = 2.9814 Now we can use these facts to get the x coordinate of C: 2.9814/(sqrt(10)-x) = 1/sqrt(2) sqrt(10)-x = 2.9814*sqrt(2) x = sqrt(10) - 2.9814*sqrt(2) x = -1.0541 Finally we can use the Pythagorean theorem to get X: X^2 = (sqrt(10)+1.0541)^2 + (2.9814)^2 X^2 = 26.666 X = 5.1640 Q.E.D.
@maxgladkikh23266 ай бұрын
Я помню эту задачу! 9 класс советской школы, 40 лет назад. Почти все справились без затруднений. Как она может быть олимпиадной?
@kateknowles80554 ай бұрын
(r - sqrt(5))(r+sqrt(5)) = r.r -5 with OE produced to the circumference at G so that OG = radius =r. Now if EO is produced also to meet a reflection (H) of G in diameter AB, the product HE.EG is the r.r-5 mentioned at the start. HE.EG = ED.ED by the intersection of HG and the chord DE extended. so r.r -5=5 so r.r =10 so r=sqrt(10) Now to notice that CE.EB also = ED.ED by intersection of chords so this is 5 also From triangle OBE, Pythagoras' theorem gives : EB.EB = OB.OB+ OE.OE = r.r + 5 = 15 CE = 5/sqrt(15) EB = sqrt(15) so BC = 5/sqrt(15) + sqrt(15) = 5/15 times (sqrt(15) ) +(15/15) sqrt ( 15 ) = 4/3 of sqrt (15)
@ExpressStaveNotation9 ай бұрын
Extend DE to make the chord that intersects with chord BC. R5.r5 = BE.EC 5 = r15.EC EC = 5/r15 BC = 5/r15 + r15.
@MrPaulc2227 ай бұрын
r = sqrt(10) as it's the square's diagonal. sqrt(5)^2 + sqrt(10)^2 = (EB^2, so EB = sqrt(15) BCA and BEO are congruent. (EB)/(OB) = (AB)/(CB) Call (CB), x as it's the target value. (sqrt(15))/(sqrt(10)) = (2*sqrt(10)/x Cross multiply: (sqrt(10)) * (2*sqrt(10)) = (sqrt(15)*x 20 = (sqrt(15)*x 400 = 15x^2 Reduce: 80 = 3x^2 (80/3) = x^2 (sqrt(80))/(sqrt(3) = x. Rationalise to (sqrt(240))/3 = x Simplify: (4*sqrt(15))/3 = x I have 5.164(rounded to 3dp)
@grzegorzmordas91347 ай бұрын
The radius of the circle is Sqrt(2x5) = Sqrt(10). Triangles BEO and ABC are similar. Thus: OB/BE=AB/BC or r/Sqrt(r^2+5) = x/2r. Substituting r=Sqrt(10) we get: Sqrt(10)/Sqrt(15) = x/2Sqrt(10), hence: x=20/Sqrt(15) = 4Sqrt(15)/3.
@marcgriselhubert39159 ай бұрын
The side length of the square is sqrt(5) and the radius of the circle is sqrt(2).sqrt(5) = sqrt(10) We us an orthonormal, center O, first axis (OB). The equation of the circle is x^2 + y^2 = 10 We have B(sqrt(10);0) and E(0; sqrt(5)), then VectorBC(-sqrt(10); sqrt(5)) is colinear to VectorU(-sqrt(2); 1) The equation of (BE) is: (x -sqrt(10)).(1) - (y).(-sqrt(2)) = 0 or x + sqrt(2).y -sqrt(10) = 0, or x= -sqrt(2).y +sqrt(10) C is the intersection of (BE) and the circle, the ordinate of C is such as: (-sqrt(2).y +sqrt(10))^2 + y^2 = 10, or 3.y^2 -4.sqrt(5).y = 0 So the ordinate of C is (4.sqrt(5))/3, and its abscissa is -sqrt(2). (4.sqrt(5))/3) + sqrt(10) = (-4.sqrt(10))/3 + sqrt(10) = -sqrt(10)/3 Finally we have C(-sqrt(10)/3; (4.sqrt(5))/3) and Vector BC(-4.sqrt(10))/3; (4.sqrt(5))/3) and BC^2 = 160/9 + 80/9 = 240/9 Finally BC = sqrt(240)/3 = (4.sqrt(15))/3.
@kaistmechanicАй бұрын
If you use the similarity condition of a triangle, it's much easier to find the answer
A = ½R² = 5 cm² R = √10 cm tan α = s/R = √5 / √10 = 1/√2 α = 35,26° x = 2R cos α x = 5,164 cm ( Solved √ )
@DB-lg5sq2 ай бұрын
شكرا لكم على المجهودات يمكن استعمال (cosB)^2=5/4r^2 X^2=(2r)^2 (1+2cos2B) = 2(2r)^2(cosB)^2 X^2= 10
@MarieAnne.5 ай бұрын
My solution started out the same Find side length of square = √5 Find radius of circle = √10 Find length of BE = √15 But instead of completing the circle, I joined A to B to form △ABC We find that △ABC ~ △EBO by AA ∠ACB = 90° (angle subtended by diameter = 90°) and ∠EOB = 90° ∠ABC = ∠EBO (same angle) Using similar triangles we get: BC/BO = AB/EB BC/√10 = 2√10/√15 *BC = 20/√15 = 4√15/3*
@venkateswararaokotaru43025 ай бұрын
After getting OE=√5 , RADIUS OD=OA= OB=√10 and BE=√15 , We Have ∆ABC ~ ∆EBO Give us BC/AB=OB/BE So BC = (2√10)×√10/√15 =(4/3) √15 .
@tamirerez25476 ай бұрын
Very nice solution 👍
@murdock55378 ай бұрын
φ = 30°; area ∎DFOE = 5 → FO = a = √5 → DO = a√2 = r = √10 ∆ ABC → sin(BCA) = 1 → AB = 2r ∆ BEO → EO = r/√2; BO = r → BE = r√6/2 → ABC = δ → cos(δ) = 2r/r√6 = √6/3 = BC/2r → BC = 4√15/3
@plamenpenchev2625 ай бұрын
Put the same square to the right. Chord property then Sqrt(15)×|CE| = sqrt(5)×sqrt(5) Then sqrt(15) + sqrt(15)/3
@user-gn4mq5cs6e8 ай бұрын
Drop a perpendicular on X, it will cut at x/2 and calculate X straight away
@whoskiana2 ай бұрын
you can also solve this by similarity, can't you? Triangle EOB ~ ACB (ACB=EOB=90° and EBO is common), from there you can find BC
@InventPeace14 ай бұрын
Did they leave out of the description that " O " was the bisection point of AB ? InventPeaceNotWar
@gaylespencer61889 ай бұрын
Found angle CBA. Then took Cos (CBA) and multiplied it by the diameter of (2*10^.5) = 5.16......
@quigonkenny9 ай бұрын
Let r be the radius of the circle and s be the side length of the square. As square OEDF has area 5, its side length is the square root of that area, or √5. Draw radius OD. In addition to being a radius of the semicircle, OD is also a diagonal of the square. As such, it's length is √2 times the side length. r = √2•√5 = √10. Triangle ∆EOB: EO² + OB² = BE² (√5)² + (√10)² = BE² BE² = 5 + 10 = 15 BE = √15 Draw CA. As C is on the circumference of the semicircle and is the angle between the ends of the diameter AB, ∠ C = 90°. As ∆EOB and ∆BCA share angle ∠B and are both right triangles, ∆EOB and ∆BCA are similar. Triangle ∆BCA: BC/AB = OB/BE BC/2√10 = √10/√15 = √2/√3 BC = (2√10)(√2/√3) BC = 4√5/√3 = 4√15/3 ≈ 5.164
@zdrastvutye9 ай бұрын
i have calculated repeatedly the deviation of point c from the circle with interpolation: 10 print "mathbooster-russian math olympiad":a1=5:l1=sqr(a1) 20 dim x(3,2),y(3,2):r=l1*sqr(2):xb=2*r:yb=0:yd=l1:@zoom%=1.4*@zoom% 30 xd=r-sqr(r*r-yd^2):xe=xd+l1:ye=yd:xb=2*r:yb=0:ye=l1:sw=.1:goto 70 40 dxk=(xe-xb)*k:xc=xb+dxk:dyk=(ye-yb)*k:yc=yb+dyk 50 dgu1=(xc-r)^2/a1:dgu2=yc^2/a1:dgu3=r*r/a1:dg=dgu1+dgu2-dgu3 60 return 70 k=sw:gosub 40 80 dg1=dg:k1=k:k=k+sw:k2=k:gosub 40:if dg1*dg>0 then 80 90 k=(k1+k2)/2:gosub 40:if dg1*dg>0 then k1=k else k2=k 100 if abs(dg)>1E-10 then 90 110 lg=sqr((xc-xb)^2+(yc-yb)^2):print "der abstand BC="; lg 120 x(0,0)=xd:y(0,0)=0:x(0,1)=x(0,0)+l1:y(0,1)=0:x(0,2)=xd:y(0,2)=l1 130 x(1,0)=x(0,0)+l1:y(1,0)=0:x(1,1)=x(1,0):y(1,1)=l1:x(1,2)=xd:y(1,2)=yd 140 x(2,0)=xe:y(2,0)=ye:x(2,1)=xc:y(2,1)=yc:x(2,2)=xd:y(2,2)=yd 150 x(3,0)=r:y(3,0)=0:x(3,1)=2*r:y(3,1)=0:x(3,2)=xe:y(3,2)=ye 160 masx=1000/2*r:masy=700/r:if masx run in bbc basic sdl and hit ctrl tab to copy from the results window
@mg.10446 ай бұрын
metot 2 ACB ~ OEB sin ß = CB /2r = r/ EB
@TheCodeFather2545 күн бұрын
Why not create the line AC and use trigonometry to solve for CB?
@GraeTheGreat-zl9us7 ай бұрын
What app he using???
@احمدالجوهر-ظ4ت7 ай бұрын
OB×AB=CB×EB ACB right angled
@TyyylerDurden2 ай бұрын
I found BC through the similarity between the right triangle CAB (it is right because its hype is the circle's diameter) and the triangle OEB. 20/root 15
@JPTaquari5 ай бұрын
I did it by triangulation and then by similarity of triangles and arrived at 5.24228. I must have rounded up a little. Nice exercise, congratulations From Brasil !
@alexeygourevich69676 ай бұрын
Радиус окр-ти DO = √2 * DE = √2 * √5 = √10 = ОВ. Пусть угол ЕВО равен β. Тогда tgβ =√5/ √10 = 1/√2. Но треуг АСВ - прямоугольный с углом С=π/2, поэтому АС/СВ = tgβ = 1/√2. Также AC^2+ CВ^2 = (2√10)^2 = 40, отсюда, поделив на CВ^2, получим (1/√2)^2 + 1 = 40/ CВ^2, или 3/2 = 40/ CВ^2, отсюда CВ^2 = 80/3, т.е. CВ = √(80/3) = √(16*5/3) = 4* √((3*5)/(3*3)) = 4*√15 / 3.
@santiagoarosam4309 ай бұрын
a²=5→ a=√5→ r= Diagonal del cuadrado =a√2=√5√2=√10→ EB²=(√5)²+(√10)²=15→ EB=√15→ Si G es la proyección ortogonal de O sobre EB y h=OG→ h√15=√5√10→ h=√50/√15 → Razón de semejanza entre los triángulos ACB y OGB = s=AB/OB=2r/r=2→ AC=2h→ CB²=AB²-AC²=(2r)²-(2h)²=(2√10)²-(2√50/√15)²→ CB=20√15/15 =4√15/3. Gracias y saludos.
@joyhuang78458 ай бұрын
有另一左右對稱正方形,畫出來之後,也是利用圓內幕性質,即可求出EC
@constantinfedorov23078 ай бұрын
Я не очень понимаю, как такая элементарная задачка могла попасть на олимпиаду. В условии дано все - радиус известен, это диагональ квадрата, отрезок BE тоже считается тривиально (стороны EO = √5 OB = √10 => BE = √15), и дальше опять тривиальное подобие треугольников ABC и EBO. BC/AB = OB/EB; BC = (2√10)√(10/15) = (4/3)√15; Тут олимпиадой и не пахнет, на ЕГЭ бывают задачи сложнее.
@UrievJackal8 ай бұрын
We don't really know, which level of math, this Olympiad demands. Therefore, when first time I used a sine for BOE triangle, maybe I was wrong. Maybe children of that Olympiad may not know of trigonometry. So the best solution is to use similar triangles BOE and BCA at the end. Thus, BO/BE = x/AB; R/BE = x/2R.
Cos of tria = √10 / √15 2r = 2√10 X = cos x 2r = 4√15 / 3
@michallesz28 ай бұрын
IF BD=R then AO=OB and OD=R ERROR
@Cricketdoctor_19999 ай бұрын
🤙Nice geometry problem bro!...
@sakibalmahmud6866 ай бұрын
Triangle ABC and Triangle OBE symmetric.. Then OBE is fully known..then ABC aslo known..from that..
@ivantatarchuk6977 ай бұрын
Why OD is the radius of semi circle?
@cabinetdecuriositestechniq30596 ай бұрын
Yes, why is it the radius ? The entire demonstration is based on this false premise.
@LukovaMadubo6 ай бұрын
A distance from the centre to the circumference of the circle is having a name,it is called RADIUS
@cabinetdecuriositestechniq30596 ай бұрын
@@LukovaMadubo ...the supposed center of the circle. Nothing shows that O is the center of the circle. Therefore, OD is not the radius.
@ivantatarchuk6976 ай бұрын
@@LukovaMadubo Sorry. I haven't noticed that O is the center.
@shoebmd4287 ай бұрын
Triangle ACB and OEB are similar, , it could have saved some steps
@1ciricola9 ай бұрын
The radius of the circle is the length of line segment DO, which is √10 , since the length of each side of the square is √5. A line drawn between C and O likewise has a length of √10 ΔCOB is an isosceles triangle. Since line segments EO and OB are known [√5 & √10 respectively], arctan .707 = 35.26° The isosceles triangle has two angles of 35.26° ∠CBO and ∠BCO The Altitude bisects the base BC at M. The length of each half can be calculated using the cosine function. Cos 35.26° = BM/BO = BM/√10 (.816)(√10) = BM = 2.58, length of BC = (2)(BM) = 5.16
@cya3mdirl1586 ай бұрын
10:05 not obvious
@감나빗-268 ай бұрын
is this for 8grade students?
@wiwa19629 ай бұрын
|FD| = |OF| = sqrt(5) |OD| = r = sqrt(5) x sqrt(2) = sqrt (10) |BE| =sqrt (sqrt(10))^2 + (sqrt(5))^2) = sqrt(15) P(triangle) OBE = 1/2 x |OB| x |OE| = 5/2sqrt(2) and P(triangle) OBE = 1/2 x h(trangle BOE) x |BE| = 5/2sqrt(2) => h(trangle BOE) = 1/3 x sqrt(30) |OB| = |OC| = r = sqrt(10) => r^2 = (h (trangle BOE))^2 +(1/2 x |BC| )^2 => |BC| = 4/3 x sqrt(15)
@MYldrm2 ай бұрын
Five ore pipe?
@himadrikhanra74638 ай бұрын
14+ 4root 5....? Line construction...similarly...diameter...Pythagoras
@just_isaac155 ай бұрын
To the people who are stating other methods, I am so jealous😭😭
@inventionssimpleexpression76943 ай бұрын
Trigonometri kulnarak çözmek daha pratik ve şık
@SGuerra3 ай бұрын
Uau! Que questão bonita. Eu encontrei uma solução um pouco diferente. Parabéns pela escolha!!! Brasil - setembro de 2024.
A good problemi for mr. perrelman the russian genius
@chimaths-class8 ай бұрын
Great
@Misha-g3b7 ай бұрын
2, -2, 2i, -2i.
@ΓΕΩΡΓΙΟΣΔΟΥΖΕΝΗΣ-χ9κ6 ай бұрын
There is another way of doing it simplified yielding the same resault.
@RafaelCardoso-gu6pq8 ай бұрын
Mel, o cara que erra essa aí não acerta nem o local de prova
@sergovoy7 ай бұрын
Корневая труба)))
@flastkchance53126 ай бұрын
Turkish children are given only 2 minutes to solve this.
@GUIDORAFAEL23046 ай бұрын
Show!
@WlodekCiejkaTV8 ай бұрын
There is much simpler solution. Angle ACB is 90 =› triangles ABC and BOE are similar =› OB/EB=CB/AB =› CB=AB*OB/EB =› CB=2√10*√10/√15=20/√15=4√15/3. Result the same but solution more elegat.
You took long rout. The angle ACB is 90* , since it lie within semi circle. and EOB is also 90*. So both triangle ABC & EBC are similar triangles. And you are done !!!