Another ridiculously awesome integral with a beautiful result

  Рет қаралды 17,077

Maths 505

Maths 505

Күн бұрын

This integral combines 2 of my favourite integration techniques so I had a wonderful time solving it

Пікірлер: 42
@taterpun6211
@taterpun6211 Жыл бұрын
Favourite constants throughout a lifetime boys: π teenagers: e men: γ
@kamalsaleh6497
@kamalsaleh6497 Жыл бұрын
As a teenager, my favorite number is the Euler Mascheroni constant.
@trelosyiaellinika
@trelosyiaellinika 5 ай бұрын
You are a true MIRZA(DEH) of integration! I deeply enjoy your videos. Even though I watch and take notes from the videos and lectures of various people on the net, often comparing different approaches, yours have a special place. You are a true teacher... Bahat shukriya!
@joshuaiosevich3727
@joshuaiosevich3727 8 ай бұрын
I’m using your videos as lectures to get better at math, you do great work man!
@archinsoni1254
@archinsoni1254 7 ай бұрын
This was a very high level integral.
@davidblauyoutube
@davidblauyoutube Жыл бұрын
8:45 Or you could just note that this is the Laplace transform of sin(x), which you can look up in a table or recall from memory. 😁
@maths_505
@maths_505 Жыл бұрын
"You dare use my own spell against me Potter"😂 The idea is extremely efficient but this was fun
@MrWael1970
@MrWael1970 Жыл бұрын
Awesome Integral and awesome solution. Good Luck
@redroach401
@redroach401 11 күн бұрын
3:14 (pi) - Why not proceed by getting imaginary part of integral and then ix=-u to get gamma function and from there you can immediately get -pi/2 * gamma
@javiergilvidal1558
@javiergilvidal1558 Жыл бұрын
The integral at 9:08 will diverge unless s < 2. You can suppose that, because you are interested in (I)´(1), so the end computations will involve specialising s at 1, but it´s important that you say so explicitly. Therefore, in the exposition we must specify 1 less than or equal to s < 2.
@herbertdiazmoraga7258
@herbertdiazmoraga7258 Жыл бұрын
this is video is epicc!!
@margozamora5573
@margozamora5573 Жыл бұрын
Saludos desde mexicooooo, me encanta tu contenido, sigue así🤩😊
@ayoubnasmi6794
@ayoubnasmi6794 14 күн бұрын
You could use Ramanujan master theorem
@slavinojunepri7648
@slavinojunepri7648 Ай бұрын
Excellent
@manstuckinabox3679
@manstuckinabox3679 Жыл бұрын
EYOO its the integral we did together
@MaalikJohannes
@MaalikJohannes Жыл бұрын
what..? you're memorising specific integrals? you cant be serious......become a priest or something lmao
@manstuckinabox3679
@manstuckinabox3679 Жыл бұрын
@@MaalikJohannes LOL! it's funny cuz I actually wanted to be a priest, in all seriousness I do believe I have somewhat of the human capability of evaluating the quality of certain decisions, while deciding to memorize specific integrals could be observed (trivially)as a blunder of one's time, comprehending the process and memorizing the logical evaluation of the method used to solve said integral, would indeed aid in quickly noticing similar integrals that fall under the same "umbrella" (I'd consider the general way of seeing this is that this integral falls under the family of derivatives with respect to s of the integral(f(x)/x^s) where f(x) is the function denoted in Ramanujan's Master theorem)). in summary, Lol no I'm not serious but I do have good memory so I automatically memorized the Ramanuj-variation of the solution because it's the one I used.
@MGoebel-c8e
@MGoebel-c8e Жыл бұрын
10:20 I can’t wrap my head around this integral representation of the reflection formula. This seems to diverge for all positive exponents. Did you forget to mention a restriction on z? Would be helpful to clear this up a bit since the formula itself seems to be very helpful. Thanks!
@Circuito28
@Circuito28 5 ай бұрын
Should it be possible to with feynman choosing ln(ax), differentiating for a we obtain pi/2a for I'(a), now I'm blocked because I was trying to obtain I(1) as it's the solution be integrating I' between infinity and 1, on the left hand side I obtain I(inf) - I(1) = pi/2 (lim a->inf of ln(a)) which is ALMOST the euler mascheroni😂 I miss the zeta(1) term which Im sure it's cointained in I(infinity) but that I cannot evaluate, any ideas?
@minhnguyen1338
@minhnguyen1338 Жыл бұрын
elegant
@nguyenquangtuyen6626
@nguyenquangtuyen6626 Жыл бұрын
I love it
@robertlittlejohn8666
@robertlittlejohn8666 Жыл бұрын
I think I've got a derivation that's more straightforward. At least it doesn't involve so many technical gamma function results. Let me know if you want to see it. Basic idea (Feynman's method etc) is the same however.
@unknownhero6187
@unknownhero6187 Жыл бұрын
From where does the rule about partial derivatives come? Why if the integral converges we can switch the operators?
@insouciantFox
@insouciantFox Жыл бұрын
Dominated convergence and Fubini's theorem
@samirhamdi1557
@samirhamdi1557 Жыл бұрын
What pen and tablet are you using for your pencast video?
@puceno
@puceno Жыл бұрын
wow
@FilippoCutaia
@FilippoCutaia Жыл бұрын
Using lobochevsky integral?
@maths_505
@maths_505 Жыл бұрын
Nope
@FilippoCutaia
@FilippoCutaia Жыл бұрын
@@maths_505 onsari9
@bilkishchowdhury8318
@bilkishchowdhury8318 6 ай бұрын
Lobochevsky kaisen
@NurHadi-qf9kl
@NurHadi-qf9kl Жыл бұрын
|sin x {d(ln x)^2}/2= =(1/2)sin x( ln x)^2+ -(1/2)|(ln x)^2cos x dx= =...-(1/2)|(sin x){(ln x)^2} + +(1/2)|sin x d{(ln x)^2} Jadi |=(1/4)(ln x)^2(cos x+sin x)+ +C Lalu dimasukkan batas2nya.
@giuseppemalaguti435
@giuseppemalaguti435 Жыл бұрын
Con lnx e infinito ci rinuncio subito
@FilippoCutaia
@FilippoCutaia Жыл бұрын
Socio,puoi usare semplicemente l'integrale di lobachevsky, dove integrale da 0 a infinito di f(t) per sinx/x dx è uguale a integrale da 0 a π/2 di f(t) dx. in questo caso diventa integrale da 0 a π/2 di lnx dx, che è xlnx+x, facciamo le sostituzioni appropriate e otteniamo che il risultato è π/2 ln(π/2) + π/2 - 0ln0 + 0, che è semplicemente {π/2 ln(π/2) + π/2 + C}
@abi3135
@abi3135 Жыл бұрын
Found a way to do it using laplace transform Using, ℒ (ln(x)) = -(γ + ln(x))/x ⇒ ℒ (-γ - ln(x)) = ln(x)/x ∫ sin(x)ln(x)/x → ∫ sin(x)ℒ (-γ - ln(x)) → ∫ ℒ (sin(x))(-γ-ln(x)) → ∫ (-γ-ln(x))/(1+x²) → -γ ∫ 1/(1+x²) = -γπ/2
@Impossiblegend
@Impossiblegend Жыл бұрын
Tools he used: Laplace transform, Euler's reflection formula, Feynman's technique/ differentiation under integral, more gamma and digamma related identities, change of order, and substitution. Tools you used: Laplace transform, Catalan's constant identity, arctan formula. I think it's safe to say yours is better :P
@pardeepgarg2640
@pardeepgarg2640 Жыл бұрын
Suggestion: Integral from 0 to infinity (ln(tanx))^2 dx Result : (π/2)^3 or (π^3)/8
@eroi1963
@eroi1963 Жыл бұрын
LETSGOOOO
@finnr3472
@finnr3472 Жыл бұрын
Cool video but whats not beautiful that you put parentheses at sin but not at ln. Either both or none.
@maths_505
@maths_505 Жыл бұрын
Got it boss
@finnr3472
@finnr3472 Жыл бұрын
@@maths_505 sry for the useless comment ;)
@maths_505
@maths_505 Жыл бұрын
No comment is ever useless from any one of you. All of you are amazing and you have no idea how much the support of each and everyone here means to me
@Mario_Altare
@Mario_Altare Жыл бұрын
My attempt/try: sin x = [e^(ix) - e^(-ix)]/2i f(t)=\int_0^infty [e^(ix) - e^(-ix)](ln x)/x dx, f(-i)=0, [f(i)]/2i = I f'(t)=\int_0^infty [e^(-tx) ln x] dx tx = u dx = du/t f'(t)= - γ/t - (ln t)/t f(t) = -γ ln t - (ln^2 t)/2 + C f(-i) = 0 --> C = - πγi/2 + π^2/8 f(t)= -γ ln⁡ t - (ln^2 ⁡t)/2 -πγ/2 i+ π^2/8 I= [f(i)]/2i = (-γπi)/2i = -γπ/2
Another Absolute BEAST!!! Introducing the Vardi Integral
15:29
1% vs 100% #beatbox #tiktok
01:10
BeatboxJCOP
Рет қаралды 67 МЛН
A crazy yet perfect integral
12:24
Maths 505
Рет қаралды 15 М.
A ridiculously awesome integral with an epic result
13:43
Maths 505
Рет қаралды 12 М.
FEYNMAN IS MY GOAT! Integral of sin(x)/x from 0 to infinity
12:24
Math Scribbles
Рет қаралды 1,4 М.
Play the Philidor against EVERYTHING | 400-500
57:05
chessbrah
Рет қаралды 22 М.
How to Stop Procrastinating and Finally Take Action
16:31
Ali Abdaal
Рет қаралды 75 М.
Praggnanandhaa crushes his opponent with a queen sacrifice in 29 moves
15:26
The 7 Levels of Math Symbols
14:03
The Unqualified Tutor
Рет қаралды 38 М.