an aesthetic double sum

  Рет қаралды 19,733

Michael Penn

Michael Penn

Күн бұрын

Пікірлер: 48
@SanketGarg
@SanketGarg 4 жыл бұрын
Such a great problem with elegant solution.
@tomatrix7525
@tomatrix7525 4 жыл бұрын
Another beauty Michael. Hello from Ireland
@keinKlarname
@keinKlarname 4 жыл бұрын
I really like such problems with elegant solutions.
@winteringgoose
@winteringgoose 4 жыл бұрын
I wrote out this expression for a coworker yesterday, and to my astonishment, the instant I finish writing, she blurts out, "It's 6!" Shocked, I ask her how. She proceeds to explain: "Because m and n are both 0, so 2 and 2 and 2 has to be 6!" I told her she was right but that wasn't why...we didn't go any further than that, but it was a funny little moment to share.
@toamatau8785
@toamatau8785 4 жыл бұрын
Why would you write it out for someone who thinks 2^0 is 2 or more worryingly that 2(2+2)=6
@winteringgoose
@winteringgoose 4 жыл бұрын
@@toamatau8785 Because I don't know what someone will think about a thing before I tell them about it
@JM-us3fr
@JM-us3fr 4 жыл бұрын
Dang it, I didn't notice the common denominator things leads to a cancellation. I left the fractions un-combined as (1/2^m+1/2^n) and had to do a lot more work.
@JL-vh8ne
@JL-vh8ne 4 жыл бұрын
This equation are called "Macintosh Plus".
@goodplacetostop2973
@goodplacetostop2973 4 жыл бұрын
12:10 Can’t believe Ajax Amsterdam put 13 goals yesterday. Anyway, daily homework... For notation reasons, let’s introduce surd(x,n) being the n-th real root of x. So, surd(x,2) is the square root of x, surd(x,3) is the cube root of x, and so on. In the development of the binomal (a • surd(a/3,5) - b/surd(a^3,7))^n, determine the terms that contains a to the power of three, if the sum of the binomial coefficients that occupy uneven places in the development of the binomial is equal to 2048.
@alphacharlie1979
@alphacharlie1979 4 жыл бұрын
-264 a^3 b^7
@padraiggluck2980
@padraiggluck2980 3 жыл бұрын
Wow! Thank you for your videos, Prof Penn.
@andcivitarese
@andcivitarese 4 жыл бұрын
let S=sum[m=0 to inft] (m+1)/2^m. Split into sum[m=0 to inft] m/2^m + sum[m=0 to inft] 1/2^m. The second term converges to 2. In the first term let m=k+1 and the sum becomes sum[k=-1 to inft] (k+1)/2^(k+1). Bring a 2 outside the denominator and notice that we can neglect the term for k=-1 which is 0, and so the first term becomes (1/2) sum[k=0 to inft] (k+1)/2^k, i.e. (1/2)S. Putting all toghether we get an equation for S: S=S/2+2 from which S=4
@toamatau8785
@toamatau8785 4 жыл бұрын
Was very pleasantly surprised i was able to follow along with this, lol.
@shanmugasundaram9688
@shanmugasundaram9688 4 жыл бұрын
Separating 'x' outside the summation and writing it as differential of product functions is indeed genius.The double summation converges interestingly to a natural number and that too to a perfect number' 6'.
@VaradMahashabde
@VaradMahashabde 4 жыл бұрын
I am just sad he didn't use an arithmetico-geometric series
@TheMauror22
@TheMauror22 4 жыл бұрын
That's what I call supersymmetry
@shahinjahanlu2199
@shahinjahanlu2199 4 жыл бұрын
You are great and I enjoy your solution
@skwbusaidi
@skwbusaidi 4 жыл бұрын
But wolframalpha gives that 1/2 (m+n+mn)/(2^(m+n)) coverages to 6 which is correct
@zecareca42
@zecareca42 4 жыл бұрын
Extremely elegant
@PlayerMathinson
@PlayerMathinson 4 жыл бұрын
Can someone please explain me how did covergence lead to him exchanging the terms of the summation and having no effect?
@Milan_Openfeint
@Milan_Openfeint 4 жыл бұрын
If a sum converges, you can reorder the terms. If the sum (result) is infinite, you can't. It's... some rule that everybody knows ;-)
@Dhanush-zj7mf
@Dhanush-zj7mf 4 жыл бұрын
@@Milan_Openfeint I was wondering why is that rule true....😊
@PlayerMathinson
@PlayerMathinson 4 жыл бұрын
@@Milan_Openfeint Yes, but any intuition or proof you can give? Thanks.
@PlayerMathinson
@PlayerMathinson 4 жыл бұрын
@ゴゴ Joji Joestar ゴゴ Thank you for your reply. Never knew of this theorem, will find more about it.
@buxeessingh2571
@buxeessingh2571 4 жыл бұрын
The series converges absolutely, so you can exchange sums.
@BrainsOverGains
@BrainsOverGains 4 жыл бұрын
Isn't assuming that the series converges too show that the series converges circular reasoning?
@Qsdd0
@Qsdd0 4 жыл бұрын
He's assuming the series converges to find it's value. The argument for the convergence is that the exponential beats the polynomial, but that of course isn't quite rigorous.
@TheMauror22
@TheMauror22 4 жыл бұрын
Maybe now, with an epsilon-N argument, one could show that the limit of the partial sums is 6.
@buxeessingh2571
@buxeessingh2571 4 жыл бұрын
It is absolutely convergent, so you can exchange the limit operations.
@BrainsOverGains
@BrainsOverGains 4 жыл бұрын
@@buxeessingh2571 and why does it absolutely converge? 🤔
@skwbusaidi
@skwbusaidi 4 жыл бұрын
Wolframalpha can not solve this. It gives that series is diverges
@JivanPal
@JivanPal 4 жыл бұрын
It seems that WolframAlpha fails to apply the limit test properly to nested series. For example, it even incorrectly states that Σ_m Σ_n [1/(mn)] fails to converge by virtue of the limit test, which is incorrect, as the limit test gives an inconclusive result on that series.
@EebstertheGreat
@EebstertheGreat 4 жыл бұрын
These videos are great to watch at 2x speed.
@k3dr1
@k3dr1 4 жыл бұрын
Very aesthetic indeed
@jkid1134
@jkid1134 4 жыл бұрын
One blackboard ❤
@JorgeGomez-li9td
@JorgeGomez-li9td 4 жыл бұрын
Very nice!
@Schaex1
@Schaex1 4 жыл бұрын
This is really beautiful! The only thing I don't really understand is why do you evaluate the sum at x=0.5? Did I miss something or what's the reason behind that?
@easymathematik
@easymathematik 4 жыл бұрын
Evaluating x^n at x = 0.5 gives you 2^n in the denominator. :)
@Schaex1
@Schaex1 4 жыл бұрын
@@easymathematik Oooh, I see. Thanks a lot ^^
@easymathematik
@easymathematik 4 жыл бұрын
@@Schaex1 Your welcome. :)
@MarcoMate87
@MarcoMate87 4 жыл бұрын
Before commuting the order of the sums we should prove that the double series is convergent (absolutely, but it has positive terms so simple and absolute convergence are coincident). This calculus you showed doesn't prove that the series converges, it only proves that if the series converges, the value of the double sum is 6.
@user-A168
@user-A168 4 жыл бұрын
Good
@guill3978
@guill3978 4 жыл бұрын
6 is already 110
@tasnimmahfuznafis8892
@tasnimmahfuznafis8892 4 жыл бұрын
At around 1:40, he exchanged m and n and it changed the form of the problem yet did not affect the total sum somehow. I am in high school now and do not understand how that could have happened. Can someone please explain to me how that happened or what topic I need to study to understand that part?
@sensei9767
@sensei9767 4 жыл бұрын
𝓐 𝓔 𝓢 𝓣 𝓗 𝓔 𝓣 𝓘 𝓒
@kshitijsharma3170
@kshitijsharma3170 4 жыл бұрын
😭it's difficult
@l1mbo69
@l1mbo69 4 жыл бұрын
I'd say it's easier than most Olympiad problems.. although the first step would be quite unnatural for someone's first time (it was for me at least)
@lucatanganelli5849
@lucatanganelli5849 4 жыл бұрын
This is a good place to stop saying this is a good place to stop. Whoever thought of editing that "good place to stop" compilation just made this guy's endings so awkward. Anyway great video Mike.
A nice approach to a famous sum.
35:45
Michael Penn
Рет қаралды 25 М.
I really like this sum!
18:00
Michael Penn
Рет қаралды 37 М.
Cat mode and a glass of water #family #humor #fun
00:22
Kotiki_Z
Рет қаралды 42 МЛН
a combination of classic problem types
18:12
Michael Penn
Рет қаралды 9 М.
EXTREME quintic equation! (very tiring)
31:27
blackpenredpen
Рет қаралды 665 М.
So many factorials!!!
28:47
Michael Penn
Рет қаралды 47 М.
Irish Math Olympiad | 2009 Question 3
20:14
Michael Penn
Рет қаралды 117 М.
This infinite series is crazy!
16:59
Michael Penn
Рет қаралды 41 М.
Summation Formulas and Sigma Notation - Calculus
20:24
The Organic Chemistry Tutor
Рет қаралды 1,7 МЛН
A questionable factorial problem
18:46
Michael Penn
Рет қаралды 10 М.
Putnam Exam 2004 | B5
25:57
Michael Penn
Рет қаралды 64 М.