a nice integral and an important ignored constant

  Рет қаралды 40,099

Michael Penn

Michael Penn

Күн бұрын

Пікірлер: 76
@freecky1621
@freecky1621 3 жыл бұрын
It is still unknown that if Catalan's Constant is rational or not. There's many interesting expression of Catalan's Constant. One of my favorite is integral of 2*ln(2*cos(x)) from 0 to pi/4.
@MathSolvingChannel
@MathSolvingChannel 3 жыл бұрын
I got another way to solve this problem😎: kzbin.info/www/bejne/l5-lkGqvpLh2mck
@samueldevulder
@samueldevulder 3 жыл бұрын
4:14 a sqrt() is missing. We should have sqrt(1+y²) as the length of the hypotenuse.
@mabrouksalah4138
@mabrouksalah4138 2 жыл бұрын
Sin(×)=2y/(1+y.y) ^2
@yassinezanned9837
@yassinezanned9837 2 жыл бұрын
@@mabrouksalah4138 actually if you add the missing square root you'll get the form 2y/(1+y.y) which Pr.Penn found because it will be the product of two square roots in the bottom.
@blackdeath39muffin45
@blackdeath39muffin45 3 жыл бұрын
Catalan's constant is really useful when dealing with integrals related to polylogarithms, it's related to the Lerch transcendent and the Legendre Chi function as well
@MathSolvingChannel
@MathSolvingChannel 3 жыл бұрын
2:57 Weierstrass substitution, I did another method to solve this problem, Link: kzbin.info/www/bejne/l5-lkGqvpLh2mck
@goodplacetostop2973
@goodplacetostop2973 3 жыл бұрын
11:04 Good Place To Stop 11:06 Behind the scenes?
@karolakkolo123
@karolakkolo123 3 жыл бұрын
@@kostasbr51 he probably has a computer script which makes a comment automatically whenever a new video is posted lmao
@karolakkolo123
@karolakkolo123 3 жыл бұрын
@einstein9073 yeah but he's ALWAYS first and I doubt that he just sits there all the time waiting for a notification to pop-up. Or maybe he does...
@MathSolvingChannel
@MathSolvingChannel 3 жыл бұрын
a bot?😂
@ChaineYTXF
@ChaineYTXF 3 жыл бұрын
superb. And thank you for writing arctan(x) and not tan^-1.
@perrydimes6915
@perrydimes6915 3 жыл бұрын
Neat trick with the overlapping audio + video tracks. I don't think I noticed that before but it keeps up a neat rhythm.
@Roger_Mansuy
@Roger_Mansuy 3 жыл бұрын
It seems a bit tricky to "hide" the uniform convergence argument to justify the series/integral inversion
@JCCyC
@JCCyC Жыл бұрын
I started playing with the integral you obtained by variable substitution, but to any upper bound x rather than 1. The resulting function, for big numbers, can be approximated as the constant arctan tends to (pi/2) multiplied by the integral of 1/x, aka ln. Therefore, if you divide that function by ln x, the resulting function tends to pi/2 on infinity.
@MathFromAlphaToOmega
@MathFromAlphaToOmega 3 жыл бұрын
In general, I don't think there are nice formulas for sums like 1/a^2k-1/(n-a)^2k+(n+a)^2k-(2n-a)^2k+... where the sum is over integers congruent to +/-a mod n. Similarly, sums with all plus signs don't usually have closed forms when the powers are odd. This has to do with special values of L-functions, which I'm not an expert on, but maybe there are counterexamples to this rule.
@theimmux3034
@theimmux3034 3 жыл бұрын
How do we know we aren't just too stupid to find a closed form representation of that series? How do we know that it is a new constant of it's own? Like what if we never solved the Basel problem and just called it a new constant?
@TheEternalVortex42
@TheEternalVortex42 2 жыл бұрын
We don't know. It could be that one day someone finds a different expression for it in terms of other constants.
@manucitomx
@manucitomx 3 жыл бұрын
I very much enjoy these substitutions. Thank you, professor.
@gregsarnecki7581
@gregsarnecki7581 3 жыл бұрын
I was very recently looking for a solution to the integral of x/sinx after reading a paper by Silagadze from 2018, "Sums of generalized harmonic series for kids from five to fifteen". In it he gives the expression 7*zeta(3)=integral of {(πx/sinx) - (x^2/sinx)}dx; alas from π to 0, not π/2 to 0. Still, your video came at the perfect time! Keep up the great videos!!
@pierreabbat6157
@pierreabbat6157 3 жыл бұрын
How does Catalan's constant compare to Occitan's constant, Valencian's constant, or Balear's constant?
@chessematics
@chessematics 3 жыл бұрын
2:29 WEIERSTRAẞ!! Another underrated method in calculus 2.
@waldomcnaldo7306
@waldomcnaldo7306 Жыл бұрын
I took Prof. Bradley's discrete mathematics course while I was there. It's cool to see some of his work has been featured in a video!
@holyshit922
@holyshit922 4 ай бұрын
I would calculate it following way Integration by parts with u = x and dv = 1/sin(x)dx (Here 1/sin(x) is quite easy to integrate when we use double angle formula 1/sin(x) = 1/(2sin(x/2)cos(x/2)) = 1/(2sin(x/2)/cos(x/2)cos^2(x/2)) 1/sin(x) = 1/(2tan(x/2)cos^2(x/2))) Now I would use substitution u = sin(x)/(1+cos(x)) Then finally I would use power series (In fact it is geometric series with common ratio -u^2)
@Fortitudeize
@Fortitudeize 3 жыл бұрын
If you do this integral by substituting the complex exponential identity for sin(x) you find a nice proof for the value of sum(n=0,inf) 1/(2n+1)^2 by comparing the real and imaginary parts of the integral. It also uses the Leibnitz-Madhava sum.
@SabaSa6a
@SabaSa6a Жыл бұрын
It turns out that integral of atan(y)/y over 0 to x is a special function called Inverse tangent integral Ti_2(x). It is easy to derive its power series representation (by using that of inverse tangent function): Ti_2(x) = 1 - x^3/3^2 + x^5/5^2 - x^7/7^2 + ... and then Ti_2(1) = G
@insouciantFox
@insouciantFox Жыл бұрын
Leibniz rule is simpler here: Int_0^1(arctany/y)dy = int_0^1int_0^1(y²z²+1)^-1dydz = int_0^1int_0^1sum((-1)ⁿy²ⁿz²ⁿ)dydz Because f(y) and f(z) are ind. and equal, = sum (-1)ⁿ[int_0^1(y²ⁿzdy)]²= sum (-1)ⁿ/(2n+1)² = G ■
@IbrAhMath
@IbrAhMath 3 жыл бұрын
Did I miss it or why was it okay to change the series and the integral?
@Wabbelpaddel
@Wabbelpaddel 3 жыл бұрын
Continuous function in the sum and uniformly converging sum
@DeanCalhoun
@DeanCalhoun 3 жыл бұрын
y is bounded between 0 and 1, and z is bounded between 0 and y. This means z
@Willtedwards
@Willtedwards Жыл бұрын
Could you have also opted for an IBP to bring tan(x/2) into play?
@adandap
@adandap 3 жыл бұрын
Can this be done more directly using the Laurent series for cosec(x)? Seems like you should be able to, though the series for cosec isn't all that pretty, and involves Bernoulli numbers.
@bobzarnke1706
@bobzarnke1706 3 жыл бұрын
SInce the initial substitution y=tan(x/2) wasn't obvious, I integrated by parts, knowing that ∫csc(x)dx = ln(tan(x/2)). This makes the integral equal to -∫[0,π/2] ln(tan(x/2)) dx, where the substituting y=tan(x/2) is more obvious and gives -∫[0,1] ln(y) dy/(1+y²) (which I later learned was a known integral for G). How to integrate this wasn't clear but, after watching the video and learning that the result was an infinite sum, I expanded this to -∫[0,1] (ln(y) - y²ln(y) + y⁴ln(y) - ...) dy, each term of which can be integrated using ∫yⁿ‾¹ln(y)dy = yⁿ(ln(y) - 1/n)/n; evaluating the result at the limits uses lim[x->0] xⁿ ln(x) = 0. (Alternatively, replacing ln(y) by ∫[y,1] dz/z makes it equivalent to the above after changing the order of integration,)
@lukandrate9866
@lukandrate9866 Жыл бұрын
-int[0,1] ln(y)•dy/(1+y²) can be again integrated by parts and then you just use the arctan series
@tonywong8677
@tonywong8677 3 жыл бұрын
I solved it by using complex integral. Z = exp ix, x = -i ln Z, sin x = 1/2i * ( exp ix -exp -ix ), Z from 1 to i, then equating the real part of the integral to get the same answer. I find out another interesting result when I equated the Imaginary part to zero. It shows that Summation of (-1)^n/(2n+1) from 0 to infinity is equal to pi/4. Which means pi can be written as an infinite series. Is there anything wrong with my calculation ?
@pineapplegodguy
@pineapplegodguy 3 жыл бұрын
I did a monte carlo integration of 1/2 x/sin(x) in the (0, pi/2) interval to find out if the result matched the constant... and it does not! import random from math import pi from math import sin somma = 0 for i in range(10000): x = random.uniform(0,pi/2) f = (1/2)*x/sin(x) somma += f integra_f = somma/10000 print(integra_f) the program returns something in the range of 0.5827 instead. any idea why?
@pineapplegodguy
@pineapplegodguy 3 жыл бұрын
ok if anyone is interested, it's simply a matter of multiplying the integral by the length of the interval (so, pi/2) the following code gives the correct answer import random from math import pi from math import sin somma = 0 for i in range(10000): x = random.uniform(0,pi/2) f = (1/2)*x/sin(x) somma += f integra_f = (pi/2)*somma/10000 print(integra_f)
@michelebrun613
@michelebrun613 3 жыл бұрын
At minute 4:28 you should add a square in the drawing
@__hannibaal__
@__hannibaal__ 11 ай бұрын
In past i studied too much look like this integral with more parameter : result is fascinated
@sushildevkota350
@sushildevkota350 3 жыл бұрын
This concept of converting integral into summation form and finally the integral is the best approach for tough calculus problem. So this question has been solved by me from this idea. I know this idea from olympiad and penn's technique.
@erikross-rnnow5517
@erikross-rnnow5517 3 жыл бұрын
Lovely video :)) Maybe I'm just slow, but I'd love to have you talk us through some of the later calculations just a tiny bit more since I get lost without pausing the video to ponder how you got to the next equation. This is not necesarily a critique of your style because the lack of deeper explanations cut through to the interesting connections between the infinite series and a somewhat arbitrary looking integral at first, anyways, just an idea from a lowly pleb.
@thehokkanen
@thehokkanen 3 жыл бұрын
Could you evaluate the integral of arctan(y)/y from 0 to 1?
@maxwellsequation4887
@maxwellsequation4887 3 жыл бұрын
He literally just did
@thehokkanen
@thehokkanen 3 жыл бұрын
@@maxwellsequation4887 I mean evaluate the exact answer
@davidblauyoutube
@davidblauyoutube 3 жыл бұрын
@@thehokkanen The exact answer is Catalan's constant. It is unknown if this constant is rational.
@coc235
@coc235 3 жыл бұрын
@@thehokkanen It doesn't have a closed form aother than just G, it's approximately equal to 0.916
@richardheiville937
@richardheiville937 3 жыл бұрын
No close form does exist for this, this is a constant like e, Pi.
@Bodyknock
@Bodyknock 3 жыл бұрын
One thing I'm curious about but can't seem to find the answer to is why they chose the letter G for Catalan's constant? Obviously there's overlap in constant labels (Gauss' constant is also G, Cahen's Constant is a C, etc), but often if it's a capital English letter it's the first letter of the name of the constant. There must have been a reason for the G, I wonder what it was?
@ojasdeshpande7296
@ojasdeshpande7296 2 жыл бұрын
26 letter of the alphabet seem too less to us to use repeated notations and also Greek. Symbols
@brahimsebbata9036
@brahimsebbata9036 3 жыл бұрын
Fine intégrale good explication
@d4slaimless
@d4slaimless 3 жыл бұрын
Why, oh why we use the serious expansion...
@ojasdeshpande7296
@ojasdeshpande7296 2 жыл бұрын
Cebecoz y not
@mathematicsmi
@mathematicsmi 3 жыл бұрын
I already published the solution of this question before 5 months.. good solution btw
@The1RandomFool
@The1RandomFool Жыл бұрын
Complexifying sin and using geometric series to evaluate the integral leads to yet another solution to the Basel problem. It is present in the imaginary part, which must be 0.
@cernejr
@cernejr 3 жыл бұрын
Approx 0.916
@redwanekhyaoui7232
@redwanekhyaoui7232 3 жыл бұрын
Hello Michael. You usually switch intergals and sums (interchanging) but I think we are not allowed to do this always. It is under some conditions. Could you please make a video about this situation with an easy clear example? 😊 Keep up the good content!
@InstigationMex95
@InstigationMex95 3 жыл бұрын
If the sum does not contain a variable for which we are integrating you can take it outside of the integral like a constant :)
@vaddiparthyyyogeswara6921
@vaddiparthyyyogeswara6921 3 жыл бұрын
Good observation. Even though it may be a correct one, explanation can not be skipped
@miro.s
@miro.s 3 жыл бұрын
It would be nice to show it every time when it is applied after It’s a good place to stop
@failsmichael2542
@failsmichael2542 3 жыл бұрын
If it works, it works.
@mohamedfarouk9654
@mohamedfarouk9654 3 жыл бұрын
When you think it may be irrational, then it is.
@Pablo360able
@Pablo360able 3 жыл бұрын
Do you think abs(ln(i^i)/pi) is irrational? Don't use context clues.
@giuseppemalaguti435
@giuseppemalaguti435 3 жыл бұрын
Non ho capito perché l'integrale di artangy/y l'hai fatto così complicato.... Non potevi fare un unica serie di potenze di arctg diviso y senza fare un doppio integrale? Grande Michael
@DavidSavinainen
@DavidSavinainen 3 жыл бұрын
You could do, if you know the series representation of arctan(z) by heart. Not everyone does, but most people know the geometric series, so he uses that to derive the arctan(z) series.
@spudhead169
@spudhead169 3 жыл бұрын
2nd November is Trying to be Tom Scott day.
@laurentpaget5388
@laurentpaget5388 2 жыл бұрын
x = 4.(3-2.sqrt(2)) = .686
@Fun_maths
@Fun_maths 3 жыл бұрын
Hi, love the math and all but I have s different question, how do you make your thumbnails?
@MichaelPennMath
@MichaelPennMath 3 жыл бұрын
I use coolors.co/ to make a color scheme and place everything in canva "by hand". For mathematical symbols, I copy and paste the unicode.
@Fun_maths
@Fun_maths 3 жыл бұрын
@@MichaelPennMath Thank you!
@txikitofandango
@txikitofandango 3 жыл бұрын
video duration is 11:11
@inyobill
@inyobill Жыл бұрын
Isn't there a discontinuity of the function at x = 0?
@anonymous-xm4gx
@anonymous-xm4gx 3 жыл бұрын
Sir can you please tell what is the utility of this integral representation?
@adityaekbote8498
@adityaekbote8498 3 жыл бұрын
Art is its own practicality
@maxwellsequation4887
@maxwellsequation4887 3 жыл бұрын
@@adityaekbote8498 yes
@nandeesh2ninad
@nandeesh2ninad 3 жыл бұрын
I am faster
The phantom integral suggester.
13:17
Michael Penn
Рет қаралды 29 М.
Thanks viewer, for this nice integral!!
17:49
Michael Penn
Рет қаралды 41 М.
When u fight over the armrest
00:41
Adam W
Рет қаралды 28 МЛН
Noodles Eating Challenge, So Magical! So Much Fun#Funnyfamily #Partygames #Funny
00:33
КОГДА К БАТЕ ПРИШЕЛ ДРУГ😂#shorts
00:59
BATEK_OFFICIAL
Рет қаралды 8 МЛН
a nice integral equation.
10:44
Michael Penn
Рет қаралды 26 М.
The Problem with 7825 - Numberphile
11:22
Numberphile
Рет қаралды 1,3 МЛН
Why this puzzle is impossible
19:37
3Blue1Brown
Рет қаралды 3,1 МЛН
The solution is an important constant.
13:39
Michael Penn
Рет қаралды 57 М.
All of the details -- for the Calculus students out there!!!
21:28
Michael Penn
Рет қаралды 29 М.
The Feigenbaum Constant (4.669)  - Numberphile
18:55
Numberphile
Рет қаралды 1,5 МЛН
Integrate x^-x dx
20:37
Prime Newtons
Рет қаралды 123 М.
The hardest "What comes next?" (Euler's pentagonal formula)
53:33
Why π^π^π^π could be an integer (for all we know!).
15:21
Stand-up Maths
Рет қаралды 3,5 МЛН
What a nice limit!
10:07
Michael Penn
Рет қаралды 26 М.
When u fight over the armrest
00:41
Adam W
Рет қаралды 28 МЛН