a twist on a classic improper integral

  Рет қаралды 13,661

Michael Penn

Michael Penn

Күн бұрын

Пікірлер: 47
@applealvin9167
@applealvin9167 Жыл бұрын
actually it's not cos(7x) but cos(5x) also -f(0) which is -1 is missing so the answer should be (5/96)(25ln5-27ln3) (checked using desmos) btw this integral looks like dirichlet integral but there's no π in the final answer which is quite interesting
@Jack_Callcott_AU
@Jack_Callcott_AU Жыл бұрын
@applealvin9167 You are right. He made a mistake writing cos(7*x) , and I checked on my HP50g calculator.👍
@megauser8512
@megauser8512 Жыл бұрын
But, it is *not* the Dirichlet integral, since it's integrand function is sin^5(x)/x^4, whereas the 5th Dirichlet integrand is sin^5(x) / x^5.
@bobh6728
@bobh6728 Жыл бұрын
dv=dx/x^4, not dv=dx/x^5
@wolfmanjacksaid
@wolfmanjacksaid Жыл бұрын
I was wondering why he got that antiderivative for v wrong, turns out it was right but he had dv written wrong as you point out
@krisbrandenberger544
@krisbrandenberger544 Жыл бұрын
That's right ✅.
@Rócherz
@Rócherz Жыл бұрын
11:47
@Jack_Callcott_AU
@Jack_Callcott_AU Жыл бұрын
Slight typo at 11:47 . It should be 1/x^4.
@minamagdy4126
@minamagdy4126 Жыл бұрын
Not mentioned in the video, but, early in the proof, the last term works because c_n = -(sum{i in [1,n-1]}(c_i))
@coc235
@coc235 Жыл бұрын
10:41
@minamagdy4126
@minamagdy4126 Жыл бұрын
@coc235 That is a different occurrence of the same fact coming up, that time more obviously and with a mention. I thought to clarify it for the earlier, less obvious time.
@jayhem_klee
@jayhem_klee Жыл бұрын
5:00 seems that (c1+c2+..+cn)f(anx) is missing. Oh, it cancels nicely anyway !
@megauser8512
@megauser8512 Жыл бұрын
Exactly, since c1 + c2 + . . . + cn is assumed to be = 0.
@talberger4305
@talberger4305 Жыл бұрын
didn't you forget a -1 at 18:46 since you need to multiplied by -f(0)=-1. and also need to be ln(7) .
@megauser8512
@megauser8512 Жыл бұрын
Yes for the -1, but no for the ln(7) because ln(5) is correct, so he should've wrote cos(5x) on the above line, instead of cos(7x).
@federicopagano6590
@federicopagano6590 Жыл бұрын
I had written a theorem about this type of integral from 0 to imfinity of f(x)/x^n where the limit at the origin always exists as an hypothesis. Then this kins of integral can be computed =1/(n-1)! Integral [L(D^(n-1)f] ds from 0 to infinity where L stands for laplace transform and D regular n-1derivative. So in this case you have to take the third derivative of sin^5(x) because n=4 but before doing that you should expand sin^5(x) using the complex exponential definition of sin(x). Then you find laplace transforms which is very easy all cos(nx) involve and then you integrate all logarithms easy then you end up with same result (almost because he mixed signs of real result)
@logician1234
@logician1234 Жыл бұрын
What is the motivation for that definition of f(∞)? It seems a bit arbitrary to differentiate between periodic and non-periodic functions.
@bot24032
@bot24032 Жыл бұрын
the first definition doesn't work for periodic functions since the limit doesn't converge, and the second definition is the average value of the function in a sense. but i think the motivation for that would come from the fact that this definition works to find the Frullani integral
@MrMctastics
@MrMctastics Жыл бұрын
f(infinity) is whatever gets you the right answer
@TheEternalVortex42
@TheEternalVortex42 Жыл бұрын
It's basically just saying periodic functions become their "average" in the limit. Kind of like saying 1 - 1 + 1 - 1 + ... "converges" to 1/2
@federicopagano6590
@federicopagano6590 Жыл бұрын
I wrote a theorem in which we can compute the integral of f(x)/x
@Hipeter1987
@Hipeter1987 Жыл бұрын
This integral is actually Oops All Cosines 😁
@nardmic
@nardmic Жыл бұрын
in the third to last step it must be 25 cos(5x) and not 25 cos(7x)
@Alan-zf2tt
@Alan-zf2tt Жыл бұрын
Aha! The monster is in the detail and once when detail is detailed the monster becomes zero leaving a remaining residue of some sort that does need to be worked out. How can a (devilish?) concatenation be identified from the start? Were I a brighter being I'd try to see if the complications of lots of zero results can be somehow bypassed by simpler tests if possible. But I realize my limitations and so as Michael says so frequently: this is a good place to stop?
@CM63_France
@CM63_France Жыл бұрын
Hi, 8:38 : again a "question for you", may be Oscar will end his videos by "and that's a good place ..." we could have developed sin^5 x as a function of sin(kx) from the start, right?
@r2k314
@r2k314 Жыл бұрын
Where does that definition of the value of the periodic function at infinity come from? How is it derived?
@paolonicolacerea
@paolonicolacerea Жыл бұрын
Am I wrong or all the a_i coefficients in the general Frullani integral should be positive? It is not specified. Thanks
@tomholroyd7519
@tomholroyd7519 Жыл бұрын
Who says pictures of blackboards completely full of equations aren't real?
@lucasf.v.n.4197
@lucasf.v.n.4197 Жыл бұрын
does complex analysis solve all these improper integrals? (I mean residual theorem etc)
@fartoxedm5638
@fartoxedm5638 Жыл бұрын
My approach to the question at the end of the video: We need to find such k that we have function sin^n(x) / x^(k+1) and d^k / dx^k (sin^n(x)) is a sum of sines(cosines) with coefficients sum to zero. First(thanks to Beyer, 1987, p 140) sin^(2n)(x) = 2^(-2n) * C(2n, n) + (-1)^n / 2^(2n - 1) * sum((-1)^k C(2n, k) cos(2(n-k)x), k, 0, n-1) sin^(2n+1)(x) = (-1)^n/4^n sum((-1)^k C(2n+1, k) sin((2n - 2k + 1)x, k, 0, n) Both of them are quite messy to work with so I'll proceed witht the odd one Sum of the coefficients of k'th derivative will be(I removed the constant factor part since it's already mess) sum((-1)^k C(2n + 1, k) *(2n - 2k + 1)^k), k, 0, n) and thanks to my several pages of combinatrics it's equal to zero when k is odd and less than 2n + 1 In the end we have that integral(sin^(2n+1)(x) / x^(k+1), 0, oo) can be solved exactly like in the video when k is odd and k < 2 n + 1 I'm kinda tired so you can derive the result for even power in reply
@CTJ2619
@CTJ2619 Жыл бұрын
Why do you have do= dx/x^5 when in the original equation it is 1/x^4?
@bobh6728
@bobh6728 Жыл бұрын
I think he wrote that wrong. He found v by using x^4. So it didn’t affect the rest.
@Patapom3
@Patapom3 Жыл бұрын
Amazing!
@r2k314
@r2k314 Жыл бұрын
Does some know link to original Frullani Integral video?
@tutordave
@tutordave Жыл бұрын
Using Derive 6, I got the negative of your final answer. Sign switched in there somewhere.
@StanleyDevastating
@StanleyDevastating Жыл бұрын
he doesn't evaluate the f(infinity) -f(0) term at the front, which equals -f(0) = -1
@guntherbeer8234
@guntherbeer8234 Жыл бұрын
Why does one care about this? It has a name, so i would guess there's a reason one woukd care.
@RexxSchneider
@RexxSchneider Жыл бұрын
It's troublesome that Michael Penn didn't spot that you can't get cos(7x) from any expression of the form (sinx)^n.(cosx)^m unless n+m is at least 7. I think it should be jarringly obvious that (sinx)^2.(cosx)^3 and (sinx)^4.(cosx) are going to produce at most cos(5x).
@federicopagano6590
@federicopagano6590 Жыл бұрын
I wrote a theorem in which we can compute the integral of f(x)/x
@federicopagano6590
@federicopagano6590 Жыл бұрын
I wrote a theorem in which we can compute the integral of f(x)/x
@federicopagano6590
@federicopagano6590 Жыл бұрын
I wrote a theorem in which we can compute the integral of f(x)/x
@federicopagano6590
@federicopagano6590 Жыл бұрын
I wrote a theorem in which we can compute the integral of f(x)/x
@federicopagano6590
@federicopagano6590 Жыл бұрын
I wrote a theorem in which we can compute the integral of f(x)/x
@federicopagano6590
@federicopagano6590 Жыл бұрын
I wrote a theorem in which we can compute the integral of f(x)/x
@federicopagano6590
@federicopagano6590 Жыл бұрын
I wrote a theorem in which we can compute the integral of f(x)/x
@federicopagano6590
@federicopagano6590 Жыл бұрын
I wrote a theorem in which we can compute the integral of f(x)/x
@federicopagano6590
@federicopagano6590 Жыл бұрын
I wrote a theorem in which we can compute the integral of f(x)/x
check out the twist at the end of this integral.
20:39
Michael Penn
Рет қаралды 13 М.
Finding the closed form for a double factorial sum
17:13
Michael Penn
Рет қаралды 55 М.
Маусымашар-2023 / Гала-концерт / АТУ қоштасу
1:27:35
Jaidarman OFFICIAL / JCI
Рет қаралды 390 М.
24 Часа в БОУЛИНГЕ !
27:03
A4
Рет қаралды 7 МЛН
Their Boat Engine Fell Off
0:13
Newsflare
Рет қаралды 15 МЛН
cos within log within log -- an integration spectacular!
18:13
Michael Penn
Рет қаралды 17 М.
MIT integration bee qualifier test
46:21
blackpenredpen
Рет қаралды 361 М.
How to find the 2319th digit of 1000!
24:31
Michael Penn
Рет қаралды 61 М.
a great limit problem.
16:58
Michael Penn
Рет қаралды 14 М.
The Easiest Integral on YouTube
31:09
blackpenredpen
Рет қаралды 627 М.
a surprisingly interesting sum -- 2 ways!
14:04
Michael Penn
Рет қаралды 21 М.
so you want a HARD integral from the Berkeley Math Tournament
22:28
blackpenredpen
Рет қаралды 566 М.
do you know about the "reciprocal gamma function"??
17:44
Michael Penn
Рет қаралды 17 М.
Integrate 1/(1+x^3)
24:56
Prime Newtons
Рет қаралды 85 М.
Showing this series converges is surprisingly difficult.
18:11
Michael Penn
Рет қаралды 23 М.