these are the only perfect squares

  Рет қаралды 1,349

Michael Penn

Michael Penn

Күн бұрын

Пікірлер: 25
@pepebriguglio6125
@pepebriguglio6125 12 сағат бұрын
Why is a list of the first 24 squares (up to 23²) a sufficient list? Already at 24² we get a new set of last two digits, 76. So, when do we know that the list is complete?
@gerryiles3925
@gerryiles3925 12 сағат бұрын
Yes, you actually need to keep going until you see them start to repeat again backwards after 25^2 (625): 26^2 (676 repeat of 24^2), 27^2 (729 repeat of 23^2) etc.
@pepebriguglio6125
@pepebriguglio6125 11 сағат бұрын
@gerryiles3925 Ah, thanks, I didn't know. Nice fact!
@ShaunakDesaiPiano
@ShaunakDesaiPiano 11 сағат бұрын
The title should have been “these are the only absolutely perfect squares”.
@disgruntledtoons
@disgruntledtoons 13 сағат бұрын
I guess today's solution was not a good place to stop.
@michaelruiz9451
@michaelruiz9451 13 сағат бұрын
Excellent proof!
@goodplacetostop2973
@goodplacetostop2973 13 сағат бұрын
Not today
@howardthompson3543
@howardthompson3543 11 сағат бұрын
26^2 -> 76 Note that this does not effect the (gist of the) proof
@Bodyknock
@Bodyknock 13 сағат бұрын
<a href="#" class="seekto" data-time="209">3:29</a> Also 10 should have been boxed since 00 swapped is still 00. (It’s technically the same as 0 being boxed.)
@Bodyknock
@Bodyknock 12 сағат бұрын
You can maybe streamline the solution a bit by noting that all the digits must be included in the list of digits that are possible for squares mod 100, i.e. all the digits are either 0,1,4,6, or 9.
@acelm8437
@acelm8437 13 сағат бұрын
Happy new square year! (2025 = 45^2)
@txikitofandango
@txikitofandango 13 сағат бұрын
24^2 = 26^2 = 76 (mod 100) but the point still stands because 67 is not on the list
@maxhagenauer24
@maxhagenauer24 13 сағат бұрын
Yeah 24^2 totally equals 26^2...
@Hiltok
@Hiltok 13 сағат бұрын
@@maxhagenauer24 mod 100 it totally does. In fact, (25-n)² is congruent to (25+n)² mod 100. I don't know why Michael was sloppy with this (other than to generate comments that feed the algorithm). (25-n)² = 625 - 50n + n² (25+n)² = 625 + 50n + n² (25+n)² - (25-n)² = 100n The same symmetry is in play for squares of 50+/-n and 75+/-n, so the squares of 1 to 24 do indeed cover all possible cases for the last two digits.
@maxhagenauer24
@maxhagenauer24 12 сағат бұрын
@Hiltok I didn't know he was talking about mod 100 and congruence, he still said 24^2 = 26^2. But (25 - n)^2 is not congruent to (25 + n)^2 if n is not a natural number. I wish Michael is the video was less sloppy as well and more regular and "true" because it wasn't at some parts.
@Hiltok
@Hiltok 11 сағат бұрын
@@maxhagenauer24 Convention is 'n' is used for variable name when it is a natural number, just as we use 'x' for variable name when it is a real number. Most people reading maths will know than 'n' means a natural number (or integer) without it being explicitly stated.
@maxhagenauer24
@maxhagenauer24 11 сағат бұрын
@Hiltok That's not always true though, I seen people use n as any real number a couple times but it's generically used as a natural number while x is anything like you said.
@petersiracusa5281
@petersiracusa5281 13 сағат бұрын
In case 1, i miss why checking 0a0 is exhaustive.
@KeimoKissa
@KeimoKissa 12 сағат бұрын
Is n is congruent to 0 mod 100, it will end in 00. For the number to be absolutely square, every permutation, including 0a0, will have to be a square. If it's not, not every permutation is a square, so the number can't be absolutely square.
@supratimsantra5413
@supratimsantra5413 13 сағат бұрын
Again a great motivation you have made through your unique style lecture series vidioes.... ..it is almost heroine like adventure rush when we get your notification at our end
@bwoy12345
@bwoy12345 13 сағат бұрын
I dont get it.
@fernandobeiroa
@fernandobeiroa 13 сағат бұрын
16*16=256 25*25=625
@millwrightrick1
@millwrightrick1 13 сағат бұрын
How about 526? Or 652? They don't work.
@Hiltok
@Hiltok 13 сағат бұрын
That is only two of the six permutations of 2,5,6. What about 526, 562, 265, 652?
the most interesting proof of L'Hospital's Theorem!!
10:04
Michael Penn
Рет қаралды 9 М.
what a nice integral!
12:46
Michael Penn
Рет қаралды 10 М.
99.9% IMPOSSIBLE
00:24
STORROR
Рет қаралды 31 МЛН
Арыстанның айқасы, Тәуіржанның шайқасы!
25:51
QosLike / ҚосЛайк / Косылайық
Рет қаралды 700 М.
To Brawl AND BEYOND!
00:51
Brawl Stars
Рет қаралды 17 МЛН
how 1+1-1+1+⋯=½
14:37
Michael Penn
Рет қаралды 9 М.
Aggvent Calendar Day 18
3:36
Andy Math
Рет қаралды 9 М.
a nice divisibility problem
12:38
Michael Penn
Рет қаралды 8 М.
quite a nice couple of problems
12:25
Michael Penn
Рет қаралды 8 М.
this number is "super divisible"
14:14
Michael Penn
Рет қаралды 9 М.