Simple Linear Regression - ANOVA

  Рет қаралды 24,432

Stats4Everyone

Stats4Everyone

Күн бұрын

Пікірлер: 15
@takudzwamukura7172
@takudzwamukura7172 4 жыл бұрын
You just saved my semester... Thanks a lot
@rahishah23
@rahishah23 2 жыл бұрын
Great video! Specially for people who need a refresher on the concepts years out of school :)
@RaeTheActuary
@RaeTheActuary 3 ай бұрын
best playlist on youtbe
@omaralmabrok7323
@omaralmabrok7323 3 жыл бұрын
I like yours way to explain it ❣❣❣
@aishwaryavpkadam
@aishwaryavpkadam 3 жыл бұрын
Very helpful video! Nice explanation!
@Anonymous-we4eu
@Anonymous-we4eu 3 жыл бұрын
Hi Michelle, Thanks for such a great explanation!....can you pls explain the degrees of freedom part again or make a video on it! Thank you for you efforts!
@Stats4Everyone
@Stats4Everyone 3 жыл бұрын
Glad you found the video helpful! In general, the degrees of freedom are the number of values that can freely vary. For example, the degrees of freedom "Total" is n - 1. This is because the degrees of freedom "Total" is for the calculation of the sum of (yi - ybar)^2. If I know ybar, and I know y1, y2, ... yn-1, I do not need to know yn because I can find yn using the sample mean, ybar. Therefore, for the calculation of the sum of (yi - ybar)^2, there are n-1 freely varying values. If you have a follow-up question to this, or if I misunderstood the question, please let me know. There is a lot to discuss when it comes to degrees of freedom :-)
@Anonymous-we4eu
@Anonymous-we4eu 3 жыл бұрын
@@Stats4Everyone Great explanantion!!Thank you so much for your response and such an amazing content!
@namhainguyen6541
@namhainguyen6541 2 жыл бұрын
@@Stats4Everyone hi, I have misunderstood the term degrees of freedom too. Can you explain why we consider that we have already known y(bar) when calculating degree of freedom? I think y(bar) is the average of y in n-observations, so y(bar) should be random like y, then we cannot known y(bar). Btw thanks for your video.
@abu-bakrmohamed1707
@abu-bakrmohamed1707 Жыл бұрын
​@@namhainguyen6541 The degree of freedom "Total" , is the number of variables that can take on any value in this equation (yi - ybar)^2 , in this equation we need to estimate ybar first , so ybar = sum(yi)/n , after calculating this we lost the ability to freely change one value of all values of y, that is because one value has to adapt for the change in other values , for example if we have a variable that is like this {2,4,1,5} when calculating the mean it is equal 12/4 = 3 , so after we calculated ybar here, the question is how many values in the set can be changed while having the same value of ybar ? , only 3 of them can change and the last one must adapt to that change to have the same ybar. or in other words to have sum(yi-ybar) add to zero . so if we didn't estimate the mean and we had the population mean , we can change all 4 values freely and we won't loose any degrees of freedom because all the values in the set don't need to add up to zero .
@NavruzbekAzzamov
@NavruzbekAzzamov 2 жыл бұрын
clear explanation, THANK YOU
@keltoumahmide3916
@keltoumahmide3916 2 ай бұрын
how do we calculate ignificance f 5
@nessa2blacks
@nessa2blacks 3 жыл бұрын
Thank you SO MUCH
@chidanandasamal9121
@chidanandasamal9121 Жыл бұрын
@Stats4Everyone Hi Mam, Great explanation
@FRUXT
@FRUXT 3 жыл бұрын
Great video, however I got 6 or 7 ads during the video ... Unbearable.
Simple Linear Regression - t tests of parameters
13:33
Stats4Everyone
Рет қаралды 8 М.
T-test, ANOVA and Chi Squared test made easy.
15:07
Global Health with Greg Martin
Рет қаралды 334 М.
Sigma Kid Mistake #funny #sigma
00:17
CRAZY GREAPA
Рет қаралды 30 МЛН
Quilt Challenge, No Skills, Just Luck#Funnyfamily #Partygames #Funny
00:32
Family Games Media
Рет қаралды 55 МЛН
My scorpion was taken away from me 😢
00:55
TyphoonFast 5
Рет қаралды 2,7 МЛН
Linear Regression, Clearly Explained!!!
27:27
StatQuest with Josh Starmer
Рет қаралды 1,4 МЛН
One Way ANOVA
21:10
ArmstrongPSYC2190
Рет қаралды 1,8 МЛН
Correlation and Regression Analysis: Learn Everything With Examples
9:50
LEARN & APPLY : Lean and Six Sigma
Рет қаралды 1,5 МЛН
ANOVA: Crash Course Statistics #33
13:17
CrashCourse
Рет қаралды 584 М.
Statistics 101: Linear Regression, The Very Basics 📈
22:56
Brandon Foltz
Рет қаралды 2 МЛН
Matrix Approach to Multiple Linear Regression
10:14
LearnChemE
Рет қаралды 58 М.
Sigma Kid Mistake #funny #sigma
00:17
CRAZY GREAPA
Рет қаралды 30 МЛН