MIT Integration Bee 2024 Finals Solutions

  Рет қаралды 3,878

dr3213

dr3213

Күн бұрын

Пікірлер: 18
@laplace1139
@laplace1139 19 күн бұрын
One way to speed up P5 is to just use the generating function of the fibonacci numbers, which is pretty well known. It is 1/(1-x-x^2) and subbing x=1/4 gives 1/(1-(1/4)-(1/16))=16/11, and multiplying by 1/4 gives 4/11 (as we have (1/4)^(n+1) in the sum, not (1/4)^n). I would guess this is what the contestants used to evaluate the sum
@leofigoboh1611
@leofigoboh1611 2 ай бұрын
Hello, are you using Obsidian to write?
@danielrosado3213
@danielrosado3213 2 ай бұрын
I use Microsoft whiteboard along with a drawing pad to write
@leofigoboh1611
@leofigoboh1611 2 ай бұрын
@@danielrosado3213 Thanks!
@calcul8er205
@calcul8er205 9 ай бұрын
Oooh I had a slightly different solution for Finals question 5. Let f_n(x)=(floor((2^n)x)-floor((2^n)x-1/4))/2^n and suppose that x has binary representation given by x=0.a_1a_2...a_na_(n+1)a_(n+1).... Then f_n(x)=1/2^n if a_(n+1)=a_(n+2)=0 or f_n(x)=0 otherwise. Suppose that the binary representation of x contains it's it first 2 consecutive 0's at the (N+1)th and (N+2)th decimal place, so that max f_n(x)=1/2^N. Then the integral can be expressed as sum_{N>=1} int_(A_N)1/2^N dx =sum_{N>=1}|A_N|/2^N where A_N ={x in (0,1): binary expansion of x has the first consecutive 0's occur in the (N+1)th and (N+2)th place}. Probabilistically, |A_N|=P_N=P(in a random sequence of 0's and 1's, the first 2 consecutive 0's occur in the (N+1)th and (N+2)th position). This sum can be evaluated by identifying that P_N satisfies the linear recurrence P_N=P_(N-1)/2+P_(N-2)/4, with initial conditions, P_0=1/4 and P_1=1/8.
@danielrosado3213
@danielrosado3213 9 ай бұрын
Some other matholy people told me about this binary representation. I love it!! There are so many different ways to look at problems like this (literally)
@candy-coatedcloud
@candy-coatedcloud 8 ай бұрын
I was unaware of the feynman trick for the second problem, Is there any other way to solve it, I have tried subtitutions and stuff but cannot get to an answer
@danielrosado3213
@danielrosado3213 8 ай бұрын
I have not found another method yet, but that doesn’t mean that none exist. Possibly there may be a series solution?
@candy-coatedcloud
@candy-coatedcloud 8 ай бұрын
@@danielrosado3213 No, I have no clue anymore...
@mathalysisworld
@mathalysisworld 9 ай бұрын
Thanks!!!
@mathalysisworld
@mathalysisworld 9 ай бұрын
Bro make a good thumbnail. Only then your video will blast because content is super.
@finnhogan5525
@finnhogan5525 9 ай бұрын
Very epic bro
@yisahak
@yisahak 9 ай бұрын
Can any one tell me the best resources to prepare for this exam?
@danielrosado3213
@danielrosado3213 9 ай бұрын
The best resource is simply doing past problems, available through the website. Also, youtube.com/@Silver-cu5up?si=WJde_QfYq1xD1L64 this channel has a whole series on different methods needed for integration bees
@yisahak
@yisahak 9 ай бұрын
@@danielrosado3213 thanks! that was very helpful
@bharadwajkk6823
@bharadwajkk6823 7 ай бұрын
Doing this before JEE feels like I'm battling a final boss where I learn new stuff constantly and patterns and just stuff....I LOVE IT
@jatloe
@jatloe 9 ай бұрын
hii
MIT Integration Bee 2024 Semifinals Solutions
16:41
dr3213
Рет қаралды 1,5 М.
2024 MIT Integration Bee - Finals
1:09:25
MIT Integration Bee
Рет қаралды 694 М.
How Much Tape To Stop A Lamborghini?
00:15
MrBeast
Рет қаралды 194 МЛН
Из какого города смотришь? 😃
00:34
МЯТНАЯ ФАНТА
Рет қаралды 1,9 МЛН
Happy birthday to you by Secret Vlog
00:12
Secret Vlog
Рет қаралды 6 МЛН
Oxford Maths Interview Question (2023) - Vantage Admissions
13:03
Vantage Admissions
Рет қаралды 689
Integration Bee Prep: Limits!
16:45
dr3213
Рет қаралды 450
An Interesting Trigonometric Equation
6:06
SyberMath Shorts
Рет қаралды 3,9 М.
2024 MIT Integration Bee - Semifinals
51:11
MIT Integration Bee
Рет қаралды 23 М.
What is Integration? 3 Ways to Interpret Integrals
10:55
Math The World
Рет қаралды 393 М.
integrate with the FLOOR and CEILING | MIT Integration Bee 2023
13:58