16. Markov Chains I

  Рет қаралды 359,057

MIT OpenCourseWare

MIT OpenCourseWare

Күн бұрын

MIT 6.041 Probabilistic Systems Analysis and Applied Probability, Fall 2010
View the complete course: ocw.mit.edu/6-0...
Instructor: John Tsitsiklis
License: Creative Commons BY-NC-SA
More information at ocw.mit.edu/terms
More courses at ocw.mit.edu

Пікірлер: 92
@MsAlice729
@MsAlice729 8 жыл бұрын
This guy literally helped me pass all my stats courses! He is a bomb... If i ever visit MIT, i will drop by and thank him in person lol
@yubarajpoudel1
@yubarajpoudel1 7 жыл бұрын
i can remeber this guy Borat in MIT all the way from kazakistan
@alimustafa2682
@alimustafa2682 3 жыл бұрын
Make sure he doesnt explode beside you
@trejohnson7677
@trejohnson7677 3 жыл бұрын
Your playlist containing this video is god-tier
@phyowaihan2492
@phyowaihan2492 2 жыл бұрын
Really?
@randobianco
@randobianco 2 жыл бұрын
@@yubarajpoudel1 great success
@ashishpaniya5805
@ashishpaniya5805 5 жыл бұрын
sir your style of explaining is outstanding...Thanks, to MIT for doing this noble work which benefits hundreds of thousands of students in the world......keep up the great work!!
@MrSinalta
@MrSinalta 3 жыл бұрын
Not only students , some people like to learn during their part time and this video is excellent
@ajayeswar1409
@ajayeswar1409 5 жыл бұрын
I like how well he is trying to give us those intuitions
@Marion89gr
@Marion89gr 5 жыл бұрын
The professor's accent sounded exceptionally understandable and familiar to me, and then I saw that this brilliant teacher is from my country! Thank you so much for the lessons, μεγάλο ευχαριστώ από την Ελλάδα!
@KBSINN
@KBSINN 2 жыл бұрын
greece
@wuzhai2009
@wuzhai2009 4 жыл бұрын
Master class in presenting complex concepts -- state by state.
@dawveed84
@dawveed84 10 жыл бұрын
Such clarity and elocuence! Great lecture
@ApiolJoe
@ApiolJoe 5 жыл бұрын
This is amazing! I studied chemistry at university few years ago, and that definition of Markov Chains really makes me think of what we did with the equilibrium of the reactions with the different molecules. This is exactly the same kind of definitions: the different states are our different molecules, the probabilities have exactly the same role as our "reaction speed", and the conclusion is the same: the equilibrium is unique for a given system. Actually during the lecture I was trying to guess just from the diagram what the equilibrium would be hahaha. I feel sad that we were not even given a mention about markov chains back then. I was struggling with the last 3 lectures in this course, and even more in the assignments, but I'm so happy to see these descriptions I am already intuitively familiar with that my pain just flew away!
@ACTHdan
@ACTHdan 3 жыл бұрын
typically part of a 3rd semester calc course.
@areliastorga4942
@areliastorga4942 5 жыл бұрын
it all happened that i found this lecture where in fact that i got a case study with regards of Markov analysis. it really helps me a lot, and very comprehensive lectures.
@alexlu2844
@alexlu2844 7 жыл бұрын
Sir, Ty for your video. Easy to understand your teaching, I don't need to go school anymore.
@mrturnables1
@mrturnables1 6 жыл бұрын
This is the best introduction to markov chains ever!!!!!!
@TheMariacg031
@TheMariacg031 9 жыл бұрын
A million times better than my professor
@benabbouaissa1991
@benabbouaissa1991 9 жыл бұрын
+Maria Gutierrez he is the best Probability teacher , and of course this is why MIT costs too much ;
@jonathandobrowolski6941
@jonathandobrowolski6941 3 жыл бұрын
guys this guy is the best no cap.
@kolo6518
@kolo6518 4 жыл бұрын
What a brilliant professor. This was so so helpful
@tonyleung2442
@tonyleung2442 10 ай бұрын
Man. 1.5X speed helps me to get this done in half hour. Thanks!
@giuliom4886
@giuliom4886 4 жыл бұрын
My teacher was a total failure in teaching prob and stat. He is making my worst nightmare in a pleasant discovery.
@imadelachiri5475
@imadelachiri5475 3 жыл бұрын
That's the best probability teacher ever!
@ruili6415
@ruili6415 5 жыл бұрын
I was so suprised when the rij(101) = rij(100). Beautiful.
@quixata
@quixata 7 жыл бұрын
Simply wonderful teaching
@algebra5766
@algebra5766 9 жыл бұрын
Brilliant Job done here ....
@neslihansahin1067
@neslihansahin1067 11 жыл бұрын
very understandable and fluent . I ilked it. thank you
@nngnn152
@nngnn152 4 жыл бұрын
great lecture. i wanted to give a standing ovation when the video finished. lol.
@raynumehra
@raynumehra 9 жыл бұрын
very well explained!
@atxvet
@atxvet 10 жыл бұрын
Jeez, slackers... Had I been lucky and/or wealthy enough to attend MIT, I would not have shown up late to my classes!
@Damion00000
@Damion00000 8 жыл бұрын
While economic advantage is understandable, what is completely irrational is that you attribute being admitted to an institution of this nature to luck - this thought alone could sabotage your life.
@abhishekshivkumar734
@abhishekshivkumar734 7 жыл бұрын
Stephanie P being born rich is luck, being well connected is luck, being a legacy is luck, going to a good school is luck. get ur libertarian nonsense out of here.
@videofountain
@videofountain 7 жыл бұрын
I also attended a few class at MIT and was born with a thrift store well worn stainless steel spoon in my mouth. At least at one point in the past, there are student loans and financial assistance at a number of expensive schools.
@computerscientist5953
@computerscientist5953 6 жыл бұрын
that explains why not everyone works at the top positions after graduation. There's always those "top 5%" of students who get the cherry, and the "bottom 5%" who end up at "meh-" positions on average (or can't find a job at all)
@MrCmon113
@MrCmon113 4 жыл бұрын
@@computerscientist5953 None of which has to do with when you arrive at a lecture. Being on time for lectures is just about the least important thing about studying and there is a myriad of good reasons to be late.
@taniarahman9028
@taniarahman9028 8 жыл бұрын
very good teaching
@zhangzezhou145
@zhangzezhou145 11 жыл бұрын
thx, now i know how is like a course in MIT..
@raniab7585
@raniab7585 6 жыл бұрын
you're THE BEST wow thank you !
@zoozoo5491
@zoozoo5491 3 жыл бұрын
He is teaching probability through telling a story instead of saying again the formulas and definitions - what most teachers do.
@Bandoolero
@Bandoolero 12 жыл бұрын
really great! much better than my professor.
@sumitkhangura6006
@sumitkhangura6006 7 жыл бұрын
I love this prof
@NoobishAlpha
@NoobishAlpha 4 жыл бұрын
16:20 This phrase was inspiring.
@saadhamama2112
@saadhamama2112 8 жыл бұрын
nice explaination, very usefull thank a lot
@ashwinireddypingali2994
@ashwinireddypingali2994 7 жыл бұрын
nice explanation..thanks
@a3090102735
@a3090102735 6 жыл бұрын
Great, super clear. I like his accent now
@napoleonpolymeneas8056
@napoleonpolymeneas8056 5 жыл бұрын
Wang Yi is a Greek accent i believe!
@kokitoboy
@kokitoboy 8 жыл бұрын
very good lecture
@t-gee7516
@t-gee7516 4 жыл бұрын
Fantastic lecture!
@adityasahu96
@adityasahu96 4 жыл бұрын
If a teacher makes it complicated then he is not a good teacher. If he makes it super easy then only he is a good teacher. :-)
@cemisgezeksakini406
@cemisgezeksakini406 3 жыл бұрын
Ευχαριστώ ΕυχαριστώΕυχαριστώΕυχαριστώΕυχαριστώΕυχαριστώΕυχαριστώΕυχαριστώΕυχαριστώ!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
@incxxxx
@incxxxx 11 жыл бұрын
Excellent!
@weinerTech
@weinerTech 8 жыл бұрын
just i can say great
@HidayaRegragui190
@HidayaRegragui190 5 жыл бұрын
I love this man
@adityakanade8271
@adityakanade8271 4 жыл бұрын
Why did we use condition probability for r21(n) @46:00. Why is r21(n) not 0.3 instead?
@yw834
@yw834 4 жыл бұрын
r21(n) = 0.3 when n = 1. However, when n goes to infinity eventually you will get out of state 2 and you have equal probabiliy to go to state 1 or to state 3
@raidayoub8379
@raidayoub8379 11 жыл бұрын
Very clear
@alejandroquintoschoy3919
@alejandroquintoschoy3919 4 жыл бұрын
I'm taking the course Probability (EDX MITx) which really worth it. His book is one the best. Introduction to probability, highly recommended.
@zishanliu9
@zishanliu9 7 жыл бұрын
excellent!
@aashishraina2831
@aashishraina2831 8 жыл бұрын
excellent
@PeruanoEnTurquia
@PeruanoEnTurquia 11 жыл бұрын
excellent!
@zaza2010full
@zaza2010full 6 жыл бұрын
Thank you
@lihuil3115
@lihuil3115 2 жыл бұрын
what's the sample space, experiments of Markov Chains? If Markov Chains has two steps, is the experiment of the first step the same as the experiment of the second step?
@JK-sy4ym
@JK-sy4ym 8 жыл бұрын
smart example.
@mpbasics8285
@mpbasics8285 Жыл бұрын
the way he talks hooks me...
@cemsavasaydn7053
@cemsavasaydn7053 5 жыл бұрын
Why is he using recursion but not a transition matrix, is it because recursion is a more general notation?
@gabreil047
@gabreil047 5 жыл бұрын
Great! Thanks.
@ramilezernest7296
@ramilezernest7296 4 жыл бұрын
how can i compute the probability of been at one point before other point, starting from any point. for exemple, been in point 4 before the point 2 starting at any point?
@freemanguess8634
@freemanguess8634 6 жыл бұрын
I'm interested in this but the application is more as predictive software that can take the data that's collected and make predictions based on everything my question comes in at is it possible to use several other programs I guess like they use in Linux pipeline many large programs together to create a super program I'm interested in a program that can predict everything from everywhere and trying to get the predictive error down to less that 1 percent
@shidharthrouth
@shidharthrouth 5 жыл бұрын
pardon me for not being much bright ... but ... can anyone tell me how to calculate the probability of a change of state from 1 to 2 (suppose) if time step n is known with no existing states in between. Any help is appreciated. Thanks in advance.
@SandeepG118
@SandeepG118 9 жыл бұрын
Can anyone clarify my question....! At 32.01 it was told that r12(n) = 1- r11(n)... it is correct intuitively but if i calculate r12(n) using normal method i got it as r11(n-1)0.5+r12(n-1)0.8 which is not same as 1- r11(n) (Here r11(n) = r11(n-1)0.2+r12(n-1)0.5)
@ambastashobhit
@ambastashobhit 9 жыл бұрын
Sandeep G Hi Sandeep...r12(n) = 1-r11(n) intuitively as well as mathematically. Just for verification add up the RHS of both the equations r11(n) = r11(n-1)0.5+r12(n-1)0.2 and r12(n) = r11(n-1)0.5+r12(n-1)0.8. Addition of RHS will give us r11(n-1)+r12(n-1) which equals the LHS: r11(n)+r12(n) In other words you will notice that: r11(n)+r12(n) = r11(n-1)+r12(n-1) Continuing the same process till initial stage is reached, r11(n)+r12(n) = r11(n-1)+r12(n-1) = r11(n-2)+r12(n-2) = r11(i)+r12(i) = r11(0)+r12(0); where (i) will denote any subsequent stage and (0) is the initial stage. Now we can see that either r11(0)=0 or 1 as in the initial stage either we will be in state 1 or in state 2, hence the total probability, r11(0)+r12(0)=1 I hope that you could understand it....in case you don't just write down the equations on paper, it will be easier.
@thilinawickramasinghe6235
@thilinawickramasinghe6235 9 жыл бұрын
nice lec
@gathersteel
@gathersteel 5 жыл бұрын
Is he Markov? :P
@kaursingh637
@kaursingh637 4 жыл бұрын
thank u sir for excellent lecture --pls divide long lecture in to short lectures
@mrturnables1
@mrturnables1 6 жыл бұрын
Did he just start by saying this is a lot simpler and more intuitive?? Then why did my lecturer always sound like he was from outer space???
@MrCmon113
@MrCmon113 4 жыл бұрын
Because there is a lot of terminology around Markov processes.
@SomeHeavensStation
@SomeHeavensStation Жыл бұрын
In the r21(n) scenario (47:10) it was said that the probability is 1/2 (due to the oscillation between the two possibilities), however if the sum does not converge, then --by design -- doesn't it have no sum ? In other words, is it not false to say it equals 1/2? (And how am I looking at this incorrectly, if this is, in fact, not the case?)
@andrzejkwasniewski1266
@andrzejkwasniewski1266 Жыл бұрын
The probability of it staying in 2 is (0,4)^n which converges to 0. So for large n the probability of leaving 2 is 1, leaving you with r21=1/2
@Alakeshkalita
@Alakeshkalita 7 жыл бұрын
in r11 column after two transitions the value should be .225 not .35... @34.50minutes
@vaibhavkasotiya8452
@vaibhavkasotiya8452 4 жыл бұрын
♥♥♥♥♥♥♥♥♥
@riccardokiefer5387
@riccardokiefer5387 Жыл бұрын
Wtf i’m spending 2+k euros per year in my university to attend classes where professors aren’t even half as good as John explaining stuffs, education is fucked
@holalluis
@holalluis 11 жыл бұрын
I created an interactive table that reproduces the simple example described in this lecture! dl.dropboxusercontent.com/u/2642357/markov.html
@holalluis
@holalluis 9 жыл бұрын
***** with Javascript programming language. If you right click in the page, you will view the source code
@HUEHUEUHEPony
@HUEHUEUHEPony 2 жыл бұрын
@@holalluis the link is dead
@sumanthbalaji1768
@sumanthbalaji1768 5 жыл бұрын
Where my IIIT Hyderabad people at
@mkutkarsh
@mkutkarsh 4 жыл бұрын
@sreekanthpallavoor3048
@sreekanthpallavoor3048 7 жыл бұрын
Excellent!
17. Markov Chains II
51:25
MIT OpenCourseWare
Рет қаралды 114 М.
Introduction to Poker Theory
30:49
MIT OpenCourseWare
Рет қаралды 1,5 МЛН
黑天使被操控了#short #angel #clown
00:40
Super Beauty team
Рет қаралды 61 МЛН
coco在求救? #小丑 #天使 #shorts
00:29
好人小丑
Рет қаралды 120 МЛН
How Strong Is Tape?
00:24
Stokes Twins
Рет қаралды 96 МЛН
Markov Chains - VISUALLY EXPLAINED + History!
33:07
Kapil Sachdeva
Рет қаралды 16 М.
16. Portfolio Management
1:28:38
MIT OpenCourseWare
Рет қаралды 6 МЛН
Markov Chains Clearly Explained! Part - 1
9:24
Normalized Nerd
Рет қаралды 1,3 МЛН
Markov Decision Processes - Computerphile
17:42
Computerphile
Рет қаралды 183 М.
I Day Traded $1000 with the Hidden Markov Model
12:33
ritvikmath
Рет қаралды 28 М.
2025 MIT Integration Bee - Finals
33:54
MIT Integration Bee
Рет қаралды 70 М.
Hidden Markov Model : Data Science Concepts
13:52
ritvikmath
Рет қаралды 138 М.
Necessity of complex numbers
7:39
MIT OpenCourseWare
Рет қаралды 3 МЛН
黑天使被操控了#short #angel #clown
00:40
Super Beauty team
Рет қаралды 61 МЛН