S09.1 Buffon's Needle & Monte Carlo Simulation

  Рет қаралды 39,567

MIT OpenCourseWare

MIT OpenCourseWare

Күн бұрын

Пікірлер: 31
@mahmoudramzy4878
@mahmoudramzy4878 5 жыл бұрын
This is the best and most in depth video I found about the problem. Also the only one that doesn't make unnecessary simplifications. Thank you.
@deepakjoshi1426
@deepakjoshi1426 5 жыл бұрын
All the videos of this course are awesome. All the concepts are so easy to understand in this course. John Tsitsiklis is amazing !! THANK YOU JOHN !! THANK YOU MIT !!
@morganjones7428
@morganjones7428 3 жыл бұрын
An absolutely beautiful and profound result explained by an exceptionally talented teacher!!
@vigneshrb2529
@vigneshrb2529 8 ай бұрын
it blew my mind when I got to know we found the value of pi using complete randomness. Amazing problem and an amazing explanation.
@henrymiller5709
@henrymiller5709 5 жыл бұрын
great teacher does not say too many words,but everyword they say count
@pablock0
@pablock0 Жыл бұрын
I'm loving these classes. This one is particularly good. Thanks professor Tsitsiklis and MIT.
@brianwahome5789
@brianwahome5789 5 жыл бұрын
Thank you so much! And the accent makes it even better!
@LNJP13579
@LNJP13579 4 жыл бұрын
Very nice example. Clarified a lot of fundamentals. Thanks for it.
@osmanakalin2442
@osmanakalin2442 5 жыл бұрын
Big thanks for this video. That help me from France 🇫🇷 thanks 🙏🏻
@sannavig9566
@sannavig9566 4 жыл бұрын
thank you for savig us, my lord
@amalbalabid5758
@amalbalabid5758 2 жыл бұрын
Awesome! Thanks for your clever explanation.
@totochandelier
@totochandelier 5 жыл бұрын
Some kind of magic
@christianfunintuscany1147
@christianfunintuscany1147 4 жыл бұрын
I agree the range of the variable x is 0
@PD-vt9fe
@PD-vt9fe 4 жыл бұрын
Well, basically the range depends on what theta represents. In the video, theta is the smallest angle formed by the line and the needle. in your suggestion, it is the angle, not the smallest one, so 0
@sagensoren55
@sagensoren55 2 ай бұрын
Very well explained sir
@shaileshwasti407
@shaileshwasti407 3 жыл бұрын
So neat explanation
@asmaa.ali6
@asmaa.ali6 3 жыл бұрын
16:10 : Supplementary* instead of complementary
@asmita6368
@asmita6368 3 жыл бұрын
Thank you professor .
@topgunjinhyung
@topgunjinhyung 2 жыл бұрын
Thank you
@a6kme
@a6kme Жыл бұрын
Why does x vary from 0 to d/2? Shouldn't it vary from 0 to d?
@vigneshrb2529
@vigneshrb2529 8 ай бұрын
x is the distance from the nearest line. It is greatest when the needle mid-point is exactly at the mid-point of 2 lines.
@magn8195
@magn8195 4 жыл бұрын
How do you work out the uniform distribution of x and theta? What do you integrate?
@DaysAreOver
@DaysAreOver 3 жыл бұрын
X has a range of [0, d/2]. So the uniform PDF should be 1/(d/2 - 0) = 2/d. Similarly, theta should be 1/(pi/2 - 0) = 2/pi.
@adityasahu96
@adityasahu96 4 жыл бұрын
jesus !! wow
@valor36az
@valor36az 5 жыл бұрын
Awesome
@ДаниилПопов-у3з
@ДаниилПопов-у3з 5 жыл бұрын
This problem may be simplified by assuming a coin radius r instead of a needle. In this case we won't be needed in PDF at all and such problem will be solved geometrically. An interesting special case, isn't it? Moreover, there is a geometrical solution for the original problem.
@jaydenou6818
@jaydenou6818 Жыл бұрын
In 10:23, Can someone explain why P(X
@jaydenou6818
@jaydenou6818 Жыл бұрын
essentially, the double integral represent the whole sample space (all the possibilities of the needles) if we do not set up lower & upper bounce , which means all the joint possibilities of f_{X,\theta} (x, \theta). However, we want to find P(X
@sangrams
@sangrams 4 жыл бұрын
👌
L10.1 Lecture Overview
1:42
MIT OpenCourseWare
Рет қаралды 13 М.
S11.1 Simulation
12:35
MIT OpenCourseWare
Рет қаралды 11 М.
Support each other🤝
00:31
ISSEI / いっせい
Рет қаралды 81 МЛН
L08.7 Cumulative Distribution Functions
12:48
MIT OpenCourseWare
Рет қаралды 78 М.
L09.7 Joint PDFs
9:18
MIT OpenCourseWare
Рет қаралды 64 М.
L10.6 Stick-Breaking Example
10:02
MIT OpenCourseWare
Рет қаралды 21 М.
L10.7 Independent Normals
5:36
MIT OpenCourseWare
Рет қаралды 10 М.
L13.4 Stick-Breaking Revisited
3:53
MIT OpenCourseWare
Рет қаралды 13 М.
What is Monte Carlo Simulation?
4:35
IBM Technology
Рет қаралды 317 М.
Coding Challenge 176: Buffon's Needle
25:04
The Coding Train
Рет қаралды 102 М.
Probability Top 10 Must Knows (ultimate study guide)
50:51
JensenMath
Рет қаралды 497 М.
Equilibrium vs. Steady State
15:05
MIT OpenCourseWare
Рет қаралды 55 М.