Monica Nevins: Why p-adic numbers are better than real for representation theory.

  Рет қаралды 699

Centre de recherches mathématiques - CRM

Centre de recherches mathématiques - CRM

Күн бұрын

(19 janvier 2024/January 19, 2024) Colloque des sciences mathématiques du Québec/CSMQ. www.crmath.ca/...
Monica Nevins: Why p-adic numbers are better than real for representation theory.
Abstract: The p-adic numbers, discovered over a century ago, unveil aspects of number theory that the real numbers alone can’t. In this talk, we introduce p-adic fields and their fractal geometry, and then apply this to the (complex!) representation theory of the p-adic group SL(2). We describe a surprising conclusion: that close to the identity, all representations are a sum of finitely many rather simple building blocks arising from nilpotent orbits in the Lie algebra.

Пікірлер
Boris Khesin: Hamiltonian geometry of fluids
54:48
Centre de recherches mathématiques - CRM
Рет қаралды 154
Monica Nevins: Representations of p-adic groups via their restrictions to compact open subgroups
1:24:54
Sydney Mathematical Research Institute - SMRI
Рет қаралды 544
Hoodie gets wicked makeover! 😲
00:47
Justin Flom
Рет қаралды 138 МЛН
Миллионер | 3 - серия
36:09
Million Show
Рет қаралды 2,1 МЛН
За кого болели?😂
00:18
МЯТНАЯ ФАНТА
Рет қаралды 3,2 МЛН
Representations of p-adic groups for non-experts - Jessica Fintzen
20:08
Institute for Advanced Study
Рет қаралды 4,4 М.
ZhengTong Chern-Weil Symposium Fall 2024: Dennis Gaitsgory (Max Planck Institute for Mathematics)
1:04:12
University of Chicago Department of Mathematics
Рет қаралды 803
Peter Scholze, p-adic geometry
56:27
Clay Mathematics Institute
Рет қаралды 9 М.
Su Gao: Extremely amenable automorphism groups of countable structures
1:14:49
Centre de recherches mathématiques - CRM
Рет қаралды 46
Something Strange Happens When You Keep Squaring
33:06
Veritasium
Рет қаралды 7 МЛН
What is... p-adic geometry? - Jacob Lurie
53:26
Institute for Advanced Study
Рет қаралды 12 М.
What is...representation theory?
20:48
VisualMath
Рет қаралды 29 М.
M-Theory - Edward Witten (1995)
1:12:16
Nomen Nominandum
Рет қаралды 34 М.